Solving the mixed type axisymmetric problems for anisotropic bodies with mass forces

Deformable body mechanics


Аuthors

Ivanychev D. A.

Lipetsk State Technical University, 30, Moskovskaya str., Lipetsk, 398600, Russia

e-mail: Lsivdmal@mail.ru

Abstract

A technique for solving the mixed axisymmetric problems for the bodies bounded by the coaxial rotating surfaces from transversal-isotropic material being under the impact of mass forces was developed in this work.

Its basis is a notion of the internal and boundary states, conjugated by the isomorphism, which allows establishing one-to-one correspondence between the elements of these spaces. The internal state includes the stress tensor components, deformation tensor components and displacement vector. The boundary state includes the forces and movements at the boundary, as well as mass forces. The isomorphism of the state spaces is proved, which allows finding the internal state to be reduced to the study of a boundary state isomorphic to it. The basis is formed based on the general solution of the boundary value problem for a transversely isotropic body of revolution and on the method of creating basic displacement vectors. The orthogonalization of the state spaces is performed. Finally, the desired state detecting is reduced to solving an infinite system of algebraic equations regarding the Fourier coefficients.

The article presents the solution of the problem with mixed boundary conditions for a cylinder. The material is a transversely isotropic siltstone with the anisotropy axis coinciding with the geometric axis of symmetry. Mass forces, imitating centrifugal inertial forces, act on the cylinder. Mechanical characteristics have an analytical polynomial character. The article presents the explicit and indirect signs of problem solution convergence, and graphical visualization of the results.

Keywords:

the method of boundary states, main mixed task, mass forces, transversely isotropic cylinder, axisymmetric problems

References

  1. Stankevich I.V. Matematika i matematicheskoi modelirovanie, 2017, no. 5, pp. 40 - 53, doi: 10.24108/mathm.

  2. Bozhkova L.V., Ryabov V.G., Noritsina G.I. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI, 2011, no. 1 (11), pp. 217 - 221.

  3. Sobol' B.V. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 4 (4), pp. 1778 - 1780.

  4. Stankevich I.V. Simvol nauki, 2017, no. 4 (2), pp. 21 - 25.

  5. Pen'kov V.B., Pen'kov V.V. Izvestiya Tul'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 2000, vol. 6, no. 2, pp. 124 - 127.

  6. Pen'kov V.B, Satalkina L.V., Shul'min A.S. Izvestiya Tul'skogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki, 2014, no. 1, vol. 1, pp. 207 - 215.

  7. Goloskokov D.P., Danilyuk V.A. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova, 2013, no. 1, pp. 8 - 14.

  8. Struzhanov V.V. Matematicheskoe modelirovanie sistem i protsessov, 2004, no. 12, pp. 89 - 100.

  9. Agakhanov E.K., Magomedeminov N.S. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, 2007, no. 12, pp. 27 - 28.

  10. Fukalov A.A. XI Vserossiiskii s"ezd po fundamental'nym problemam teoreticheskoi i prikladnoi mekhaniki: Sbornik dokladov, Kazan', Kazanskii (Privolzhskii) federal'nyi universitet, 2015, pp. 3951 - 3953.

  11. Levina L.V. Kuz'menko N.V. XI Vserossiiskii s"ezd po fundamental'nym problemam teoreticheskoi i prikladnoi mekhaniki: Sbornik dokladov, Kazan', Kazanskii (Privolzhskii) federal'nyi universitet, 2015, pp. 2276 - 2278.

  12. Pen'kov V.B., Pen'kov V.V., Viktorov D.V. Izvestiya Tul'skogo gosudarstvennogo universiteta. Seriya Matematika. Mekhanika. Informatika, 2005, vol.11, no. 2, pp. 94 - 100.

  13. Pen'kov V.B., Novikova O.S., Levina L.V. Vestnik Lipetskogo gosudarstvennogo tekhnicheskogo universiteta, 2017, no. 4, pp. 25 - 56.

  14. Penkov V.B., Ivanychev D.A., Novikova O.S., Levina L.V. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations, Journal of Physics: Conf. Series 973 (2018) 012015, doi :10.1088/1742-6596/973/1/012015.

  15. Penkov V.B., Levina L.V., Novikova O.S., Shulmin A.S. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws, Journal of Physics: Conf. Series 973 (2018) 012016, doi :10.1088/1742-6596/973/1/012016.

  16. Penkov V.B., Satalkina L.V., Shulmin A.S. Thr use of the method of boundary states to analyse an elastic medium with cavities and inclusions, Journal of Applied Mathematics and Mechanics, 2014, vol. 78, no. 4, pp. 384 - 394.

  17. Ivanychev D.A, Levina E.Yu., Abdullakh L.S., Glazkova Yu.A. The method of boundary states in problems of torsion of anisotropic cylinders of finite length, International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 2019, vol. 10, no. 2, pp. 183 - 191. DOI: 10.14456/ITJEMAST.2019.18, http://TUENGR.COM/V10/183.pdf

  18. Ruslantsev A.N., Dumanskii A.M., Alimov M.A. Trudy MAI, 2017, no. 96, available at: http://trudymai.ru/eng/published.php?ID=85659

  19. Aleksandrov A.Ya., Solov'ev Yu.I. Prostranstvennye zadachi teorii uprugosti Primenenie metodov teorii funktsii kompleksnogo peremennogo (Spatial problems of the theory of elasticity. Application of methods of the theory of functions of a complex variable), Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, 1978, 464 p.

  20. Ivanychev D.A. Vesti vysshikh uchebnykh zavedenii Chernozem'ya, 2014, no. 1, pp. 19 - 26.

  21. Pen'kov V.B., Pen'kov V.V. Dal'nevostochnyi matematicheskii zhurnal, 2001, vol. 2, no. 2, pp. 115 - 137.

  22. Lekhnitskii S.G. Teoriya uprugosti anizotropnogo tela (The theory of elasticity of an anisotropic body), Moscow, Nauka, 1977, 416 p.

  23. Novatskii V. Teoriya uprugosti (Theory of elasticity), Moscow, Mir, 1975, 872 p.

  24. Satalkina L.V. Nauchnaya konferentsiya studentov i aspirantov, posvyashchennaya 60-letiyu Lipetskogo gosudarstvennogo tekhnicheskogo universiteta. Sbornik tezisov dokladov, Lipetsk, LGTU, 2007, pp. 130 - 131.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход