Aerospace System Adaptation to Satellite Injection into High-Energy Orbits

System analysis, control and data processing


Аuthors

Mikhalyev S. M.

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

e-mail: semyon.mikhalyov@tsagi.ru

Abstract

The object of the study is a reusable aerospace transportation system based on a twin-fuselage subsonic carrier aircraft for launching various payloads into near-Earth orbit.

The purpose of the work consists in determining the applicability of reusable aerospace systems for injecting payloads into high-energy orbits including interests GLONASS.

The method and methodology of the works handling are based on theoretical and computational works, including application of Computer-Aided Design and Computational Fluid Dynamics.

The work presents the follwing:

– analysis of the main GLONASS parameters as the initial data for the aerospace system configuration design;

– trajectory formation of the reusable aerospace system with its return to the launch point of its first stages;

– comparative analysis of various types of the space-rocket system fuel;

– aerospace system basic parameters optimization for GLONASS satellites delivery into orbit.

The article analyses application of partially reusable aerospace system, i.e. maximally unified modification of the fully reusable aerospace system, for satellites injection into high-energy orbits.

To increase the rocket system energy performance required for delivering GLONASS satellites to the high-energy orbits, the authors proposed an aerospace option with the non-recoverable second rocket stage and a space accelerating block on oxygen-hydrogen fuel (like the two first stages of the aerospace system). The performed analysis of appearance formation allowed determining optimal trajectories and thrust-to-weight ratio of the aerospace system and the space acceleration block.

Keywords:

aerospace system, GLONASS, twin fuselage carrier, space-rocket system, appearance formation

References

  1. Mikhalev S.M. Materialy V Mezhdunarodnogo mezhotraslevogo molodezhnogo nauchno-tekhnicheskogo foruma “Molodezh' i budushchee aviatsii i kosmonavtiki”, Moscow, 2013, pp. 251 - 252.

  2. Buzuluk V.I., Mikhalev S.M. Inzhenernyi zhurnal: nauka i innovatsiya, 2017, no. 9, available at: http://dx.doi.org/10.18698/2308-6033-2017-9-1668.

  3. Shkadov L., Denisov V., Lazarev V., Plokhikh V., Buzuluk V., Volodin S., Chervonenko K., Skipenko V. The comparative analysis of various aerospace system concepts, Acta Astronautica, 1995, vol. 35 (1), pp. 47 - 54.

  4. Stanley D.O., Engelund W.C., Lepsch R.A., McMillin M., Wurster K.E., Powell R. W., Guinta T., Unal R. Rocket-Powered Single-Stage Vehicle Configuration Selection and Design, Journal of Spacecraft and Rockets, 1994, vol. 31, no. 5, pp. 792 - 798.

  5. Mikhalev S.M. Trudy MAI, 2015, no. 81, available at: http://trudymai.ru/eng/published.php?ID=57773

  6. Buzuluk V.I., Mikhalev S.M. Aviakosmicheskaya tekhnika i tekhnologiya, 2018, no. 1 – 2, pp. 3 - 12.

  7. Lozino-Lozinskii G.E. Polet “Burana”, Materialy XIX Gagarinskikh nauchnykh chtenii – 1989, Moscow, Nauka, 1990, pp. 6 - 21.

  8. Space Shuttle News Reference Manual, 1988, available at: http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/stsref-toc.html

  9. MAKS. Sostoyanie razrabotki, nauchno-tekhnicheskii zadel. Entsiklopediya «Buran». URL: http://buran.ru/htm/makszad.htm

  10. Kuzin A.I., Vakhnichenko V.V., Lozin S.N., Lekhov P.A., Semenov A.I., Gorbatenko V.V., Romashkin A.M., Buzuluk V.I., Plokhikh V.P., Kovalev I.E., Tsyplakov V.V., Kondratov A.A. Aviakosmicheskaya tekhnika i tekhnologiya, 2010, no. 2, pp. 9 - 18.

  11. O sisteme GLONASS. Informatsionno-analiticheskogo tsentra koordinatno-vremennogo i navigatsionnogo obespecheniya, available at: http://glonass-iac.ru/guide/gnss/glonass.php

  12. Mozhaev G.V. Trudy MAI, 2009, no. 34, available at: http://trudymai.ru/eng/published.php?ID=8227

  13. Kurskov E. 3 noyabrya s kosmodroma Plesetsk byl proizveden zapusk rakety-nositelya “Soyuz-2.1b” s razgonnym blokom “Fregat” i navigatsionnym sputnikom “Glonass-M”. TASS, 30 noyabrya 2018, available at: http://tass.ru/info/5754908

  14. Buzuluk V.I. Optimizatsiya traektorii dvizheniya aerokosmicheskikh letatel'nykh apparatov (Movement trajectory optimization of aerospace flying vehicles), Moscow, TsAGI, 2008, - 476 p.

  15. Sokolov N.L. Trudy MAI, 2016, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69701

  16. Sokolov N.L. Trudy MAI, 2014, no. 75, available at: http://trudymai.ru/enng/published.php?ID=49689

  17. Hohmann W. Die Erreichbarkeit der Himmelskorper. Untersuchungen uber das Raumfahrtproblem. Oldenbourg, Munchen, 1925, 122 p.

  18. Ting L. Optimum orbital transfer by impulses, ARS Journal, 1960, vol. 30, no 11, pp. 1013 - 1018.

  19. Ting L. Optimum orbital transfer by several impulses, Acta Astronautica, 1960, vol. 6, no 5, pp. 256 - 266.

  20. Lawden D.F. Optimal Trajectories for Space Navigation. London, Butterworths, 1963, 126 p.

  21. Bender D.F. Optimum coplanar two-impulse transfers between elliptic orbits, Aerospace Engineering, 1962, no. 21, pp. 44 – 52.

  22. Eckel K. Optimum transfer in a central force field with n impulses, Acta Astronautica, 1982, vol. 9, no. 3, pp. 139 – 146.

  23. Marchal C. Transferts optimaux entre orbites elliptiques coplanaires (duree indifferente), Acta Astronautica, 1965, vol. 11, no. 6, pp. 432 - 445.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход