Application of frequency-hopping OCDM-OFDM signals for physical level attacks preventing

Systems, networks and telecommunication devices


Karpuhin E. О.*, Makarenkov N. S.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



It is utterly important to ensure the intentional radio jamming resistance for information and communication systems of special and military purpose. Attacks on such kind of networks may inflict vast damage, including a State level. Simulated jamming exercises the most dangerous impact among the existing intentional interferences, since they repeat the signal structure while its transmission. The impact of such kind of interferences may also disrupt the information availability while attempting to get access to it through a radio channel.

The presented work proposes application of frequency-hopping OCDM-OFDM signals to counteract the physical level attacks of OSI model and enhancing the signal structural stealth. Jamming immunity from the relay interference, indicators of structural stealth, and the impact from Doppler effect were considered. Simulation revealed the energy gain of 1 dB while employing the suggested signal-code structure prior to frequency hopping OFDM signals in conditions of relay interference. It demonstrated also that the signals of this type possess higher structural stealth figures, as well as more stable to Doppler effect compared to OFDM-frequency hopping signals.

The disadvantages of the proposed approach include the complexity increase of the signal-conditioning and synchronization systems on both the receiver and transmitter. It is necessary to ensure assignment of code signature from the earlier generated OCDM to each each subcarrier of the OFDM signal while the signal forming process. Besides, the frequency-hopping spread spectrum process is rather complicated itself. It requires fine synchronization between the receiver and transmitter, as well as knowing the pseudo-random sequence. The suggested signals will be less effective while data transmission in the channel without attacker, than the structure with FH-OFDM application.


orthogonal frequency-division multiplexing, orthogonal code division multiplexing, frequency-hopping spread spectrum, low-density parity-check code, Doppler effect


  1. Pristupa V.V., Zaitsev S.V. Matematicheskie mashiny i sistemy, 2015, no. 1, pp. 84 - 95.

  2. Kuznetsov V.S., Volkov A.S., Solodkov A.V., Slepov A.V. Trudy MAI, 2019, no. 104, available at:

  3. Kuznetsov V.S., Volkov A.S., Sokovikov S.A. Trudy MAI, 2018, no. 101, available at:

  4. Filatov V.I., Borukaeva A.O., Berdikov P.G., Kulakov D.V. Trudy MAI, 2019, no. 105, available at:

  5. Karpukhin E.O., Mazepa R.B., Mikhailov V.Yu. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2016, vol. 8, no. 1, pp. 12 - 16.

  6. L. Wang and B. Jezek. Ofdm modulation schemes for military satellite communications, Military Communications Conference, MILCOM 2008, IEEE, December 2008. DOI: 10.1109/MILCOM.2008.4753506

  7. Orthogonal code division multiplex CCK (OCDM-CCK) method and apparatus for high data rate wireless LAN: Patent US 8130814B2 / Ram Sivaswamy, Pradeep Siva Swamy, date: Mar. 6, 2012.

  8. Gallager R.G. Low Density Parity Check Codes, Cambridge, MA, MIT Press, 1963, 90 p.

  9. Mohamed Adnan Landolsi. A Comparative Performance and Complexity Study of Short-Length LDPC and Turbo Product Codes, Information and Communication Technologies, ICTTA '06, 2006, vol. 2. DOI: 10.1109/ICTTA.2006.1684775

  10. Thomas R. Halford, Metin Bayram, Cenk Kose, Keith M. Chugg, Andreas Polydoros. The F-LDPC Family: High-Performance Flexible. Modern Codes for Flexible Radio, Spread Spectrum Techniques and Applications, ISSSTA '08, September 2008, DOI: 10.1109/ISSSTA.2008.75

  11. D.P. Rathod, R.N. Awale. Short-Cycle Reduction Algorithm in Parity-Check Matrix of an Irregular LDPC code to Improve Error Floor Rate and Computational Complexity, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 2014, vol. 1, issue 7, available at:

  12. Luca Barletta and Arnaldo Spalvieri. Design of Short, High-Rate DVB-S2-Like Semi-Regular LDPC Codes, Research Letters in Communications, vol. 2008, Article ID 324503, available at:

  13. Osipov N.A., Shavin A.S., Tarasov A.G. Trudy MAI, 2015, no. 83, available at:

  14. Lebedev Yu.I. Pervaya milya, 2010, no. 5–6, pp. 56 – 59.

  15. Borisov V.I., Zinchuk V.M., Limarev A.E. Pomekhozashchishchennost' sistem radiosvyazi s rasshireniem spektra signalov metodom psevdosluchainoi perestroiki rabochei chastity (Interference immunity of radio communication systems with signals spectrum expansion by operating frequency pseudo-random tuning method), Moscow, Radio i svyaz', 2003, 640 p.

  16. Babintsev E.S., Lyanguzov K.A. Vestnik Izhevskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, no. 3, pp. 57 - 58.

  17. Maikov D.Yu., Vershinin A.S. Molodoi uchenyi, 2014, no. 21 (80), pp. 175 - 179.

  18. M. Strasser, C. Pöpper, S. Capkun. Efficient Uncoordinated FHSS Anti-jamming Communication, MobiHoc '09 Proceedings of the tenth ACM international symposium on Mobile ad hoc networking and computing, 2009, pp. 207 - 218.

  19. M. Lichtman, J.D. Poston, S. Amuru, C. Shahriar, T.C. Clancy, R.M. Buehrer, J.H. Reed. A communications jamming taxonomy, IEEE Security & Privacy, 2016, vol. 14, no. 1, pp. 47 – 54.

  20. L. Ding, R. Li, Y. Wang, L. Dai, F. Chen. Discrimination and identification between mainlobe repeater jamming and target echo by basis pursuit, IET Radar, Sonar & Navigation, January 2017, vol. 11, issue 1, pp. 11 – 20.

Download — informational site MAI

Copyright © 2000-2021 by MAI