Mathematical modeling and comparative analysis towing vehicle schemes application to solve the problem of space debris objects removal to the disposal orbit. Part 1

Mathematica modeling, numerical technique and program complexes


Аuthors

Ulybyshev S. Y.

Central Scientific Research Institute of Chemistry and Mechanics, 16a, ul. Nagatinskaya, Moscow, 115487, Russia

e-mail: wardoc5@rambler.ru

Abstract

The presented materials of the study, split into four parts (separate articles), consider the complex issue of mathematical modeling and comparative analysis of the two types of remote control and associated with it design appearance of a promising spacecraft-towing vehicle (STV). The STV is designed to solve the problem of space debris objects (SDO) removal into the disposal orbit from satellite systems (SS) configuration. On the example of mission realization of the SDO removal from the specified orbital plane with return ensuring for the next object removal, scenario of the STV repeated application is being numerically computed.

Substantiation and workout of the design appearance of the prospective STV with two types of propulsion system (PS), such as liquid rocket engine (LRE) and stationary plasma engine (SPE), is being performed. The article presents the STV electric power supply system calculations and determines its weight and energy characteristics, as well as solar batteries size. Specifics and options of possible schemes of SDO removal into the disposal orbit were analyzed. Disposal orbits parameters have been determined for each STV PS type. The issue of the mean value computing of the STV SPE ballistic coefficient on the typical turn of functioning while SDO towing into the disposal orbit was considered. The boundaries of minimum possible altitude of the SPE application ensuring acceleration above the level of atmospheric deceleration were determined.

Keywords:

mathematical modeling, spacecraft-towing, space debris object, propulsion system, liquid rocket engine, stationary plasma engine, burial orbit, coplanar orbit, synchronous precession orbit

References

  1. Ulybyshev Yu.P. Kosmicheskie issledovaniya, 2008, vol. 46, no. 2, pp. 133 - 147.

  2. Malyshev G.V., Kul'kov V.M., Egorov Yu.G. Polet, 2006, no. 7, pp. 82 - 88.

  3. Salmin V.V., Chetverikov A.S. Reshetnevskie chteniya: materialy konferentsii, 2010, vol. 1, no. 14, pp. 32 - 33.

  4. Baranov A.A., Grishko D.A. Ballistic aspects of large-size space debris flyby at low earth near-circular orbits, Journal of Computer and Systems Sciences International, 2015, vol. 54, no. 4, pp. 639 - 650.

  5. Maslennikov A.A. Izvestiya Rossiiskoi akademii nauk. Energetika, 2012, no. 2, pp. 126 - 141.

  6. Zelentsov V.V. Nauka i obrazovanie, 2015, no. 4, pp. 89 - 104.

  7. Aslanov V.S., Alekseev A.V., Ledkov A.S. Trudy MAI, 2016, no. 90, available at: http://trudymai.ru/eng/published.php?ID=74644

  8. Aslanov V., Yudintsev V. Dynamics of large space debris removal using tethered space tug, Acta Astronautica, 2013, vol. 91, pp. 149 - 156.

  9. Izdeliya kosmicheskoi tekhniki. Obshchie trebovaniya k kosmicheskim sredstvam po ogranicheniyu tekhnogennogo zasoreniya okolozemnogo kosmicheskogo prostranstva. GOST R 52925-2008 (Products of space technology. General requirements for space facilities limiting the technogenic contamination of near-earth space, State Standard 52925-2008), Moscow, Standarty, 2008, 6 p.

  10. Baranov A.A., Grishko D.A., Medvedevskikh V.V., Lapshin V.V. Kosmicheskie issledovaniya, 2016, vol. 54, no. 3, pp. 242 - 251.

  11. Baranov A.A., Grishko D.A. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2015, no. 4, pp. 160 - 171.

  12. Baranov A.A., Grishko D.A., Chernov N.V. Nauka i Obrazovanie. MGTU im. N.E. Baumana, 2016, no. 4, pp. 48 - 64.

  13. OKB «Fakel». Termokataliticheskie dvigateli, available at: https://www.fakel-russia.com/images/gallery/produczia/fakel_tkd_print.pdf

  14. Murashko V.M., Kozubskii K.N., Vertakov N.M., Koryakin A.I. Vestnik NPO im. S.A. Lavochkina, 2015, no. 3 (29), pp. 32 - 36.

  15. Gorshkov O.M. Novosti kosmonavtiki, 1999, no. 7, pp. 31 - 35.

  16. Tkachenko I.S., Salmin V.V. Izvestiya Samarskogo nauchnogo tsentra RAN, 2011, vol. 13, no. 6, pp. 106 - 115.

  17. Tkachuk A.V., Kozubskii K.H., Rumyantsev A.V. Aerospace MAI Journal, 2014, vol. 21, no. 2, 49 - 54.

  18. Ulybyshev S.Yu. Kosmicheskie issledovaniya, 2015, vol. 53, no. 4, pp. 332 - 344.

  19. Razumnyi Yu.N., Kozlov P.G., Razumnyi V.Yu. Nauchno-tekhnicheskii vestnik Povolzh'ya, 2015, no. 3, pp. 196 - 199.

  20. Ulybyshev S.Yu. Trudy MAI, 2018, no. 98, available at: http://trudymai.ru/eng/published.php?ID=90354

  21. Baranov A.A., Budyanskii A.A., Chernov N.V. Kosmicheskie issledovaniya, 2015, vol. 53, no. 5, pp. 409 - 414.

  22. Baranov A.A., Grishko D.A. Nauka i obrazovanie, 2013, no. 9, pp. 289 - 312.

  23. Ulybyshev S.Yu. Inzhenernyi zhurnal: nauka i innovatsii, 2016, no. 3(51), available at: http://engjournal.ru/catalog/arse/adb/1471.html. DOI 10.18698/2308-6033-2016-03-1471.

  24. Pakhomov L.A. Distantsionnoe zondirovanie atmosfery so sputnika «Meteor» (Remote sensing of the atmosphere from the satellite “Meteor”), Moscow, Gidrometeoizdat, 1979, 143.

  25. Ledkov A.S. Nauka i obrazovanie, 2014, no. 10, pp. 383 - 397.

  26. The Threat of Orbital Debris and Protecting NASA Space Assets from Satellite Collisions, available at: http://images.spaceref.com/news/2009/ODMediaBriefing28Apr09-1.pdf

  27. Aslanov V.S., Ledkov A.S., Stratilatov N.R. Polet, 2009, no. 1, pp. 54 - 60.

  28. Aslanov V.S.; Ledkov, A.S. Dynamics of Towed Large Space Debris Taking Into Account Atmospheric Disturbance, Acta Mechanica, 2014, vol. 225, no. 9, pp. 2685 - 2697.

  29. Ledkov A.S., Dyukov D.I. Trudy MAI, 2012, no. 61, available at: http://trudymai.ru/eng/published.php?ID=35644

  30. Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent SU 170380, 24.04.2017.

  31. Gavrilenko T.S., Glushkov A.V., Ulybyshev S.Yu. Patent SU 2610793, 15.02.2017.

  32. Glushkov A.V., Ulybyshev S.Yu. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=96960

  33. Glushkov A.V., Ulybyshev S.Yu. Nauchno-tekhnicheskaya konferentsiya “Innovatsionnye avtomaticheskie kosmicheskie apparaty dlya fundamental'nykh i prikladnykh issledovanii. Aktual'nye voprosy sozdaniya sluzhebnykh i nauchnykh system”. Sbornik trudov, Khimki, NPO im. S.A. Lavochkina, 2015, pp. 316 - 322.

  34. Ulybyshev S.Yu. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2019, no. 5, pp. 143-152.

  35. Galkin V.V. Trudy MAI, 2012, no. 60, available at: http://trudymai.ru/eng/published.php?ID=35383

  36. Chaikina I. Informatsionnye sputnikovye sistemy, 2008, no. 3, pp. 21.

  37. AO “NIIMash”. Toplivnye baki i gazovye ballony vysokogo davleniya, available at: http://www.niimashspace.ru/files/2016/Topliv_baki.pdf

  38. Rukovodstvo po analizu opasnosti avariinykh vzryvov i opredeleniyu parametrov ikh mekhanicheskogo deistviya. RB G-05-039-96: Normativnyi document (Guidelines for the analysis of the danger of emergency explosions and the determination of the parameters of their mechanical action. RB G-05-039-96: Normative document), Moscow, NTTs YaRB Gosatomnadzora Rossii, 2000, available at: https://gostbank.metaltorg.ru/data/norms_/rb/1.pdf

  39. Ulybyshev S.Yu. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk, 2012, no. 1 (71), pp. 76 - 81.

  40. Atmosfera standartnaya. Parametry. GOST 4401-81 (Standard Atmosphere. Characteristic, State Standard 4401-81), Moscow, Izd-vo standartov, 1981, 11 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход