Chains of electromagnetic's fields
Mathematics. Physics. Mechanics
Аuthors
e-mail: khrapko_ri@hotmail.com
Abstract
A consistent use of the exterior differential forms in the electromagnetism shows that fields of electromagnetism are geometrical quantities of two different types: differential forms and contravariant (antisymmetric) tensor densities. These types are connected with each other by a specific operation, named the conjugation, which is a part of the Hodge operation. Field tubes and families of bisurfaces depict electromagnetic fields. The conjugation allows a many-fold differentiation of the fields and leads to field chains. The Helmholtz’s decomposition of a field is a decomposition into a closed part and a closed after conjugation part of the field. Chains of fields of electric and magnetic dipoles are considered in detail. Concept of boundary of a field is used widely. Laplacian is represented in terms of the conjugation, and its action on isolated chains is considered. A sufficient condition of harmonicity of a field is found.Keywords:
Differential forms, Helmholtz decomposition, Hodge operation, LaplacianDownload