Radial and Flexural Vibrations of the Round Three-Layered Plate Interacting with Pulsating Layer of a Viscous Liquid


DOI: 10.34759/trd-2020-110-6

Аuthors

Bykova T. V.*, Mogilevich L. I.**, Popov V. S.***, Popova A. A.****, Chernenko A. V.*****

Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia

*e-mail: tbykova69@mail.ru
**e-mail: mogilevichli@gmail.com
***e-mail: vic_p@bk.ru
****e-mail: anay_p@bk.ru
*****e-mail: 3chav@mail.ru

Abstract

The presented work formulated and solved the problem of forced radial and flexural hydro-elastic vibrations of the round three-layer plate. The study of a plate with light incompressible filler under the action of normal and shear stresses from the side of the pulsating layer of the viscous incompressible liquid was performed. The axisymmetric problem, in which the plate was regarded as the lower wall of the narrow channel, filled with a viscous fluid, was studied. The fluid movement in the channel was considered as a creeping one. Equations of the three-layer plate dynamics were obtained based on the zigzag normal hypothesis and the D’Alembert principle. The developed mathematical model consists of dynamic equations of a viscous incompressible fluid layer and dynamic equations of the round three-layered plate. The following boundary conditions were selected:

– liquid sticking conditions to the channel walls;

– the liquid free-flow conditions at the channel end;

– the plate rigid fixing conditions;

– and conditions of limited liquid pressure and the deflection plate at the symmetry axis.

The hydrodynamic parameters distribution of the fluid layer as the plate deflection functions was found, and resolving equations for determining the plate elastic displacements were obtained. The amplitude-frequency responses of the radial and flexural plate displacements corresponding to the main mode for the steady-state harmonic oscillations were plotted. The numerical study of the radial and flexural oscillations amplitudes on the main mode, which demonstrated the mutual effect of the inertia and stiffness forces of the three-layered plate in the radial and normal directions, was performed. The performed computation revealed a significant impact of inertia forces in the normal direction on the amplitude-frequency response of the plate radial displacements. On the other hand, the computations showed a slight effect of inertial forces in the radial direction on the amplitude-frequency response of the plate deflections.

Keywords:

hydroelasticity, vibrations, viscous fluid, round three-layered plate

References

  1. Carrera E. Historical review of zig-zag theories for multilayered plates and shells, Applied Mechanics Reviews, 2003, vol. 56, no. 3, pp. 287 - 308. DOI: 10.1115/1.1557614.

  2. Gorshkov A.G., Starovoitov E.I., Yarovaya A.V. Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii (Mechanics of layered viscoelastoplastic structural elements), Moscow, Fizmatlit, 2005, 576 p.

  3. Starovoitov E.I., Leonenko D.V. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2018, vol. 18, no. 1, pp. 69 - 83.

  4. Starovoitov E.I., Leonenko D.V. Deformation of an elastoplastic circular three-layer plate in a temperature field, Mechanics of Composite Materials, 2019, vol. 55, no. 4. pp. 503 - 512.

  5. Starovoitov E.I., Leonenko D.V. Trudy MAI, 2014, no. 78, available at: http://trudymai.ru/eng/published.php?ID=53490

  6. Babaitsev A.V., Burtsev A.Yu., Rabinskii L.N., Solyaev Yu.O. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107879

  7. Mitin A.Yu., Tarlakovskii D.V., Fedotenkov G.V. Trudy MAI, 2019, no. 107, available at: http://trudymai.ru/eng/published.php?ID=107884

  8. Lamb H. On the vibrations of an elastic plate in contact with water, Proceedings of the Royal Society, 1921, vol. 98, pp. 205 - 216. DOI: 10.1098/rspa.1920.0064.

  9. Amabili M., Kwak M.K. Free vibrations of circular plates coupled with liquids: revising the Lamb problem, Journal of Fluids and Structures, 1996, vol. 10(7), pp. 743 - 761. DOI: 10.1006/jfls.1996.0051.

  10. Kozlovsky Y. Vibration of plates in contact with viscous fluid: Extension of Lamb's model, Journal of Sound and Vibration, 2009, vol. 326, pp. 332 - 339. DOI: 10.1016/j.jsv.2009.04.031.

  11. Dobryanskii V.N., Rabinskii L.N., Radchenko V.P., Solyaev Yu.O. Trudy MAI, 2018, no. 101, available at: http://trudymai.ru/eng/published.php?ID=98252

  12. Lomakin E.V., Rabinsky L.N., Radchenko V.P., Solyaev Yu.O., Zhavoronok S.I., Babaitsev A.V. Analytical estimates of the contact zone area for a pressurized flat-oval cylindrical shell placed between two parallel rigid plates, Meccanica, 2018, vol. 53, no. 15, pp. 3831 - 3838.

  13. Alekseev V.V., Indeitsev D.A., Mochalova Yu.A. Rezonansnye kolebaniya uprugoi membrany na dne basseina s tyazheloi zhidkost'yu, Zhurnal tekhnicheskoi fiziki, 1999, vol. 69, no. 8, pp. 37 - 42.

  14. Askari E., Jeong K-H., Amabili M. Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface, Journal of Sound and Vibration, 2013, vol. 332, no. 12, pp. 3064 - 3085. DOI:10.1016/j.jsv.2013.01.007

  15. Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Hydroelastic stability of a rectangular plate interacting with a layer of ideal flowing fluid, Fluid Dynamics, 2016, vol. 51, no. 6, pp. 821 - 833. DOI:10.1134/S0015462816060132

  16. Velmisov P.A., Ankilov A.V. Dynamic stability of plate interacting with viscous fluid, Cybernetics and Physics, 2017, vol. 6, no. 4, pp. 262 - 270.

  17. Mogilevich L.I., Popov V.S. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2011, no. 3, pp. 42 - 55.

  18. Mogilevich L.I., Popov V.S., Popova A.A. Interaction dynamics of pulsating viscous liquid with the walls of the conduit on an elastic foundation, Journal of Machinery Manufacture and Reliability, 2017, vol. 46, no. 1, pp. 12 - 19. DOI: 10.3103/S1052618817010113

  19. Kondratov D.V., Mogilevich L.I., Popov V.S., Popova A.A. Hydroelastic oscillations of a circular plate, resting on Winkler foundation, Journal of Physics: Conf. Series, 2018, vol. 944, 012057. DOI: 10.1088/1742-6596/944/1/012057.

  20. Kramer M.R., Liu Z., Young Y.L. Free vibration of cantilevered composite plates in air and in water, Composite Structures, 2013, vol. 95, pp. 254 - 263. DOI: 10.1016/j.compstruct.2012.07.017

  21. Akcabaya D.T., Young Y.L. Steady and dynamic hydroelastic behavior of
    composite lifting surfaces, Composite Structures, 2019, vol. 227, 111240. DOI: 10.1016/j.compstruct.2019.111240

  22. Liao Y., Garg N., Martins Joaquim R.R.A., Young Y.L. Viscous Fluid Structure Interaction Response of Composite Hydrofoils, Composite Structures, 2019, vol. 212, pp. 571 - 585. DOI: 10.1016/j.compstruct.2019.01.043.

  23. Mogilevich L.I., Popov V.S., Starovoitov E.I. Nauka i tekhnika transporta, 2006, no. 2, pp. 56 - 63.

  24. Ageev R.V., Mogilevich L.I., Popov V.S. Vibrations of the walls of a slot channel with a viscous fluid formed by three-layer and solid disks, Journal of Machinery Manufacture and Reliability, 2014, vol. 43, no. 1, pp. 1 - 8. DOI: 10.3103/S1052618814010026

  25. Popov V.S., Mogilevich L.I., Grushenkova E.D. Hydroelastic response of three-layered plate interacting with pulsating viscous liquid layer, Lecture Notes in Mechanical Engineering, 2019, pp. 459 - 467. DOI: 10.1007/978-3-319-95630-5_49.

  26. Chernenko A., Kondratov D., Mogilevich L., Popov V., Popova E. Mathematical modeling of hydroelastic interaction between stamp and three-layered beam resting on Winkler foundation, Studies in Systems, Decision and Control, 2019, vol. 199, pp. 671 -681. DOI: 10.1007/978-3-030-12072-6_54.

  27. Kondratov, D.V., Popov V.S., Popova, A.A. Hydroelastic Oscillations of Three-Layered Channel Wall Resting on Elastic Foundation, Lecture Notes in Mechanical Engineering, 2020, pp. 903 - 911. DOI: 10.1007/978-3-030-22041-9_96

  28. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105618

  29. Grushenkova E.D., Mogilevich L.I., Popov V.S., Khristoforova A.V. Mathematical model of oscillations of a three-layered channel wall possessing a compressible core and interacting with a pulsating viscous liquid layer, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie, 2019, no. 6 (129), pp. 4 - 18. DOI: 10.18698/0236-3933-2019-6-4-18

  30. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of Liquids and Gases), Moscow, Drofa, 2003, 840 p.

  31. Vol'mir A.S. Obolochki v potoke zhidkosti i gaza. Zadachi aerouprugosti (Shells in a fluid and gas flow: aeroelasticity problems), Moscow, Fizmatlit, 1976, 416 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход