Developing a spatial model of a gear transmission with separate storage of the accumulated and extra turns for solving non-linear problems of aviation transmissions dynamics


DOI: 10.34759/trd-2020-112-7

Аuthors

Popov V. V.1*, Sorokin F. D.1**, Ivannikov V. V.2***, Degtiarev S. A.2****

1. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
2. Scientific and technical centre of rotor dynamic «Alfa-Tranzit», 1, Leningradskaya str., Khimky, Moscow region, 141400, Russia

*e-mail: vvpopov@bmstu.ru
**e-mail: sorokinfd@bmstu.ru
***e-mail: vvivannikov@alfatran.com
****e-mail: degs@alfatran.com

Abstract

Aviation transmissions ensure the torque transfer from the rotor to propeller or fan, and accessory box drive in the engines of various types, from the engine to the shaft of the main and tail rotors of the helicopter etc. [1-3]. Aviation transmissions should ensure high strength properties at small size. The dynamics analysis performing seems to be the best tool for these requirements compliance ensuring.

Many scientific papers deal with the gear transmission dynamics. The most meaningful and interesting gear transmission models are represented in the works of Cardona [9], Spitas [12], Qiu [13], Margielewicz [14], and Kubo [19]. Nevertheless, most of them do not account for the linear wheels movement, variable stiffness, interaction between gears and other machine elements, and unfit for the non-stationary dynamics studies.

The article presents a spatial model of the gear transmission capable of accounting for the aforementioned limitations and applicable for the non-stationary dynamics problem solving. The model is based on the Cardona’s model [9].

The model employs Euler vector and the rotation tensor associated with it as rotations description. The final rotation is being decomposed into the accumulated rotation and a small incremental one. This technique allows avoiding the problems associated with achieving exceptional points near the 2p angle [15-17].

The presented model can be employed for performing analysis of the wide spectrum of gear transmissions, such as spur gears, helical gears, conical gears and internal gears. The model allows accounting for the gear mesh stiffness, gear mesh damping, kinematic error of the transmission and backlashes. The gear transmission model can conjoin with the models of other machine elements such as shafts, bearings, cases etc.

The proposed model was verified by several well-known tests.

Keywords:

gear transmissions, Euler vector, rotation tensor, tangent tensor, large displacements, large rotations

References

  1. Vulgakov E.B. Aviatsionnye zubchatye peredachi i reduktory: spravochnik (Aircraft Gear Transmissions and Gearboxes: A Guide), Moscow, Mashinostroenie, 1981, 374 p.

  2. Gus’kov A.A., Spirin A.A., Norinskaya I.V. Trudy MAI, 2020, no. 111, available at: http://trudymai.ru/eng/published.php?ID=115157. DOI: 10.34759/trd-2020-111-14

  3. Baranov M.V., Borisov M.V., Korchagin O.A., Krylov N.V., Samsonovich S.L., Stepanov V.S. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35536

  4. Özgüvent H.N., Houser D.R. Mathematical models used in gear dynamics – a review, Journal of Sound and Vibration, 1988, vol. 121, no. 3, pp. 383 – 411.

  5. Fisher A. Factors in calculating the load-carrying capacity of helical gears, Machinery, 1961, vol. 98, pp. 545 – 552.

  6. Tuplin W.A. Dynamic loads on gear teeth, Machine Design, 1953, no. 25, pp. 203 – 211.

  7. Kohler H.K., Pratt A., Thomson A.M. Dynamics and noise of axis parallel axis gearing, Proceedings of Institution of Mechanical Engineers, 1970, no. 184, pp. 111 – 121.

  8. Slavik J. Dynamics of torsional driving systems of heavy mills, Proceedings of International Federation on Theory of Machines and Mechanisms Sixth World Congress, New Delhi, 1970, pp. 1327 – 1330.

  9. Cardona A. Flexible three gear modelling, Revue Européenne des Éléments, 1995, vol. 4, no. 5 – 6, pp. 663 – 691.

  10. Geradin M., Cardona A. Flexible Multibody Dynamics – A Finite Element Approach, Wiley, New York, 2000, 327 p.

  11. Kalinin D.V. Izvestiya MGTU “MAMI”. Estestvennye nauki, 2015, no. 4, no. 3 (25), pp. 84 – 93.

  12. Spitas C., Spitas V. Coupled multi-DOF dynamic contact analysis model for the simulation of intermittent gear tooth contacts, impacts and rattling considering backlash and variable torque, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, vol. 230, no. 7 – 8. pp. 1022 – 1047.

  13. Qiu X., Han Q., Chu F. Dynamic modeling and analysis of the planetary gear under pitching base motion, International Journal of Mechanical Sciences, 2018, vol. 141, pp. 31 – 45. DOI: 10.1016/j.ijmecsci.2018.03.037

  14. Margielewicz J., Gąska D., Litak G. Modelling of the gear backlash, Nonlinear Dynamics, 2019, vol. 97, no. 1, pp. 355 – 368.

  15. Popov V.V., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2017, no. 92, available at: http://trudymai.ru/eng/published.php?ID=76832

  16. Popov V.V., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2018, no 99, available at: http://trudymai.ru/eng/published.php?ID=91790

  17. Nizametdinov F.R., Sorokin F.D. Trudy MAI, 2018, no. 102, available at: http://trudymai.ru/eng/published.php?ID=98753

  18. Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve (Vectors and tensors of the second rank in the three-dimensional space), St. Petersburg, Nestor, 2001, 276 p.

  19. Kubo A., Yamada K., Aida T., Sato S. Reseach on Ultra Speed Gear Devices (Reports 1-3), Transactions of the Japanese Society of Mechanical Engineers, 1972, no. 38, pp. 2692 – 2715.

  20. Popov V.V., Sorokin F.D. XXVII Mezhdunarodnaya innovatsionno-orientirovannaya konferentsiya molodykh uchenykh i studentov “MIKMUS”: tezisy dokladov, Moscow, IMASh, 2015, pp. 117 – 120.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход