Justification technique for rational control methods of unmanned flying vehicle


DOI: 10.34759/trd-2020-112-16

Аuthors

Dmitriev V. I.1, Zvonarev V. V.2*, Lisicin Y. E.2**

1. Military academy of communication of Marshall of the Soviet Union S.M. Budenny, 3, Tikhoretsky Avenue, St. Petersburg, 194064, Russia
2. Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: zvonarevvitalii@yandex.ru
**e-mail: fqxu@yandex.ru

Abstract

The purpose of the article is efficiency increasing of the unmanned aerial vehicle (UAV) application based on the feasible selection and realization of rational control method.

The article considers the UAV application as the object of research. The subject of research is the UAV control methods.

The relevance of the topic in the modern military-political situation is determined by ensuring the State security in the field of military development, on the assumption of the existing threats. At present, UAV is the most important component of weapons, military equipment, automated reconnaissance and information transfer systems. Its application can significantly increase the efficiency of troops command and control, increase combat capabilities and combat means effectiveness.

The article presents a methodology for the UAV application effectiveness evaluating and a technique for the UAV control methods forming. The dependence of the orrect frame reception probability on the signal-to-noise ratio for a system with addition and with auto-selection is demonstrated. Recommendations on the UAV control method selection are given.

The practical significance of the article consists in the following:

– the developed technique for evaluating the UAV application effectiveness describes more accurately the conditions for receiving messages and allows compare radio channels with various characteristics (type of modulation, type and parameters of the noise-immune code, etc.) at the information receiving point, and perform the performance indicator computing of the UAV control methods;

– in supplement to the known methods, the developed technique for rational UAV control methods substantiating allows accounting for the dynamic characteristics of a random process, determine the exact parameters of the radio channel, and increase the reconnaissance depth (ensuring herewith the required survey resolution of the required probability of the correct frame reception and the given stealth).

It is advisable to use the obtained methodology when planning the use of UAVs with the aim of transmitting information over the radio channel with signal fading.

Keywords:

UAV control methods, radio lines' geospatial and energy characteristics, UAV application efficiency evaluation, dynamic response of random processes, stealthiness of control, control stability

References

  1. Slyusar V.I. Elektronika: Nauka. Tekhnologiya. Biznes, 2009, no. 5, pp. 68 – 73.

  2. Popov A.S., Kraplin M.E. The technique of direct calculation of noise immunity of the optimal coherent reception of multiposition-keyed radio signal, in Proceedings of SPIE, vol. 5066, Lasers for Measurements and Information Transfer 2002, SPIE, Bellingham, WA, 2003, pp. 281 – 291, https://doi.org/10.1117/12.501678

  3. Voennoe obozrenie, 2016, available at: http://topwar.ru/89909-nastoyaschee-i-buduschee-bespilotnoy-aviacii-chast-2.html

  4. Makarenko S.I. Sistemy upravleniya, svyazi i bezopasnosti, 2016, no. 2, pp. 73 – 132.

  5. Morozov D.V., Chermoshentsev S.F. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=91997

  6. Slyusar V.I. Elektronika: Nauka. Tekhnologiya. Biznes, 2010, no. 3, pp. 80 – 86.

  7. Abrosimov V.K. Gruppovoe dvizhenie intellektual’nykh letatel’nykh apparatov v antagonisticheskoi srede (Grouped movement of intelligent aircraft in antagonistic environment), Moscow, Nauka, 2013, 168 p.

  8. Streletskii A. Zarubezhnoe voennoe obozrenie, 2000, no. 9, pp. 24 – 28.

  9. Mironov A.N., Tsvetkov K.Yu., Koval’skii A.A., Pal’gunov V.Yu. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=91968

  10. Charushnikov A.V., Kolesnik A.V. Informatsiya i kosmos, 2010, no. 1, pp. 94 – 97.

  11. Trubetskoi A.I., Voronin S.G. Informatsiya i kosmos, 2005, no. 4, pp. 53 – 64.

  12. Zvonarev V.V., Moroz A.V., Sherstyuk A.V. Trudy MAI, 2019, no. 106, available at: http://trudymai.ru/eng/published.php?ID=105683

  13. Zvonarev V.V., Popova A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105, available at: http://trudymai.ru/eng/published.php?ID=104213

  14. Zvonarev V.V., Popov A.S., Pryakhin V.A. Vestnik vozdushno-kosmicheskoi oborony, 2015, no. 4 (8), pp. 47 – 51.

  15. Popov A.S. Priborostroenie, 2017, no. 1, pp. 39 – 44.

  16. Zvonarev V.V., Ageev F.I., Vorona M.S., Popov A.S. Radiotekhnika, 2018, no. 5, pp. 92 – 99.

  17. Buga N.N., Kazakov A.A. Statisticheskaya teoriya svyazi (Statistical theory of communication), Leningrad, VIKI imeni A.F. Mozhaiskogo, 1979, 342 p.

  18. Kozlov I.V., Nabokov S.A., Smirnov A.S. Trudy MAI, 2011, no. 45, available at: http://trudymai.ru/published.php?ID=25408&PAGEN_2=2

  19. Likhachev V.P., Sidorenko S.V. Trudy MAI, 2018, no. 99, available at: http://trudymai.ru/eng/published.php?ID=92074

  20. Tomasi U. Elektronnye sistemy svyazi (Electronic communication systems), Moscow, Tekhnosfera, 2007, 1360 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход