Quadcopter flight control system simulation in Simulink and Simscape Multibody


DOI: 10.34759/trd-2020-112-20

Аuthors

Kalyagin M. Y.*, Voloshin D. A.**, Mazaev A. S.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: mukalyagin@yandex.ru
**e-mail: dmitry_21@mail.ru
***e-mail: mr8bit@ yandex.ru

Abstract

Currently, the unmanned aerial vehicles (UAV) are widely used throughout the world as means for monitoring, creating maps, optimizing agricultural activities, monitoring fire being dangerous areas, power lines surveillance, logistics, etc. The multirotor-type UAVs are widely proliferated due to their structural simplicity and the ability to both flying at near zero speeds and maneuvering with high frequency.

One of the most important tasks at the early stages of the UAV design consist in studying dynamic characteristics of alternative design options of the vehicles with account for their design characteristics. The state-of-the-art computer engineering systems are able to implement the end-to-end process of designing and linking solid-state UAV models with adaptive dynamic models and their operation in various modes by transferring design parameters obtained in CAD systems, directly to the simulation environment of the flight control systems. Of particular interest is the set of tasks associated with control algorithms developing to ensure the UAV normal operation under the impact of external disturbances.

The article proposes an approach to the solid-state and dynamic computer models linking of the unmanned aerial vehicle of the “quadcopter” type at the early stages of the design using Solidworks and Simulink/MATLAB software packages. The model designed in the Simulink/MATLAB environment allows evaluating the developed systems for an aircraft stabilization and control for the UAV, implemented according to the “quadcopter” aerodynamic scheme without starting the quad copter itself.

The discrepancy between the results of the computer model with full-scale tests is 2.3% for the pitch angle, 2.5% for the roll angle, 6.7% for the yaw angle and 3.7% for the height. The obtained high accuracy of the models conformity proves the possibility of applying the method for the automatic control system designing presented in the article.

Keywords:

quadcopter, mathematical model, Simulink, control systems

References

  1. Jatsun S. F. et al. Investigation of Oscillations of a Quadcopter Convertiplane in Transient Mode in the Vertical Longitudinal Plane, Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”, Springer, Singapore, 2020, pp. 345 – 358. DOI: 10.1007/978-981-13-9267-2_28

  2. Zulu A., John S. A review of control algorithms for autonomous quadrotors, Open Journal of Applied Sciences, 2014, no. 4, pp. 547 – 556. DOI: 10.4236/ojapps.2014.414053

  3. Jatsun S. et al. Control flight of a UAV type tricopter with fuzzy logic controller, XIII International scientific and technical conference "Dynamics of Systems, Mechanisms and Machines", 2017, pp. 1 - 5. DOI: 10.1109/Dynamics.2017.8239459

  4. Mellinger D., Kumar V. Control and Planning for Vehicles with Uncertainty in Dynamics, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 960 – 965. DOI: 10.1109/ROBOT.2010.5509794

  5. Tang S., Wüest V., Kumar V. Aggressive Flight with Suspended Payloads Using VisionBased Control, IEEE Robotics and Automation Letters, 2018, vol. 3, issue 2, pp. 1152 – 1159. DOI:10.1109/LRA.2018.2793305

  6. Mustapa Z. et al. Altitude controller design for multi-copter UAV, 2014 International Conference on Computer, Communications, and Control Technology (I4CT), 2014, pp. 382 – 387. DOI: 10.1109/I4CT.2014.6914210

  7. Kalmurzaeva D.K., Baginova V.V. Bespilotnye letayushchie apparaty kak instrument logistiki novogo pokoleniya. URL: https://internationalconference.ru/ images/PDF/2017/24/bespilotnye-letayushchie-apparaty.pdf

  8. Musalimov V.M., Zamoruev G.B., Kalapyshina I.I., Perechesova A.D., Nuzhdin K.A. Modelirovanie mekhatronnykh sistem v srede MATLAB (Simulink / SimMechanics): uchebnoe posobie dlya vysshikh uchebnykh zavedenii (Mechatronic systems modeling in MATLAB (Simulink / SimMechanics): a textbook for higher education institutions), Saint Petersburg, NIU ITMO, 2013, 114 p.

  9. Beji L., Abichou A., Slim R. Stabilization with Motion Planning of a Four Rotor Mini-rotorcraft for Terrain Missions Fourth, Int. Conf. on Intelligent Systems Design and APPlications (ISDA), 2004, pp. 335 - 340.

  10. Chen Y., Chen R., Su J., Simulation design on the 6-dof parallel vibration platform Based on SimMechanics and Virtual Reality, World Automation Congress (WAC), 2012.

  11. Mahony R., Kumar V., Corke P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor, IEEE Robotics and Automation Magazine, 2012, vol. 19, no. 3, pp. 20 - 32. DOI: 10.1109/MRA.2012.2206474

  12. Kozorez D.A., Obrezkov I.V., Tikhonov K.M., Tishkov V.V. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35567

  13. Tikhonov K.M., Tishkov V.V. Trudy MAI, 2010, no. 41. URL: http://trudymai.ru/eng/published.php?ID=23815

  14. Diveev A.I., Konyrbaev N.B. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85774

  15. Ogol'tsov I.I., Rozhnin N.B., Sheval' V.V Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62031

  16. Krajník T., Vonásek V., Fišer D., Faigl J. AR-drone as a platform for robotic research and education, International Conference on Research and Education in Robotics, 2011, pp. 172 - 186. DOI: 10.1007/978-3-642-21975-7_16

  17. Lara D., Romero G., Sanchez A., Lozano R., Guerrero A. Robustness margin for attitude control of a four rotor mini-rotorcraft, Mechatronics, 2010, vol. 20, no. 1, pp. 143 - 152. DOI: 10.1016/j.mechatronics.2009.11.002

  18. Bouabdallah S., Murrieri P., Siegwart R. Design and control of an Indoor micro quadrotor, Proceedings IEEE International Conference on Robotics and Automation, 2004, vol. 5, no. 5, pp. 4393 – 4398. DOI: 10.1109/ROBOT.2004.1302409

  19. D'yakonov V.P. MATLAB 6.5 SP1 + Simulink 5 i MATLAB 7 + Simulink 6 v matematike i matematicheskom modelirovanii (MATLAB 6.5 SP1 + Simulink 5 and MATLAB 7 + Simulink 6 in mathematics and mathematical modeling), Moscow, SOLON-Press, 2005, 576 p.

  20. Bouabdallah S., Clavel R. Siegwart Design and control of quadrotors with arrlication to autonomous flying. Thèse NO 3727, A la faculté des sciences et techniques de l'ingénieur: Laboratoire de systèmes autonomes 1, Section de microtechnique Lausanne, EPFL, 2007, 155 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход