Evaluating buffer memory organization impact on the message source detection procedures speed


DOI: 10.34759/trd-2020-114-15

Аuthors

Tanygin M. O.*, Alshaea H. Y.**, Dobritsa V. P.***

South-Western State University, 94, 50-let Oktyabrya str., Kursk, 305040, Russia

*e-mail: tanygin@yandex.ru
**e-mail: haideryhy7@gmail.com
***e-mail: dobritsa@mail.ru

Abstract

Rather strict requirements to the control cycle duration are being laid in certain types of information systems, such as mobile objects control systems, robotic systems and other real-time systems. Thus, the bit capacity reduction problem of messages transmitted between controlling, monitoring, switching and executing devices is urgent for them. One of the approaches to this is size reduction of the additional service information fields, intended for data integrity and authenticity control. The purpose of the work consists in obtaining numerical dependencies between the required buffer memory volume of the receiver and the execution speed increasing of analysis operations, as well as determining conditions of the memory organization option, being under consideration, application.

The authors established the relationships between the probability error value of the data placing in the receiver buffer and the number of interacting devices, the buffer memory size, and the length of the fragmented message. The article demonstrates that with buffer memory organized as isolated areas, the speed of memory attribute analysis increases proportionally to the length of the fragmented message transmitted between the source and receiver.

The article shows that with a small number of interacting devices, buffering messages from various sources in isolated memory areas can increase the speed of analysis of attribute information by a factor determined by the fragmented message length. The ratios between the buffer size and the interacting devices number were determined, which reduced the probability of errors in data placement in the buffer up to a value not exceeding 0.1.

Keywords:

data processing, message receiver, RAM, performance, simulation

References

  1. Likhttsinder B.Ya., Kirichek R.Va., Fedotov E.D., Golubnichaya E.Yu., Kochurov A.A. Besprovodnye sensornye seti (Wireless sensor network), Moscow, Goryachaya liniya -Telekom, 2020, 236 p.

  2. Talaev A.D., Borodin V.V., Petrakov A.M. Trudy MAI, 2019, no. 108. URL: http://trudymai.ru/published.php?ID=109460. DOI: 10.34759/trd-2019-108-8

  3. Black J., Rogaway P. CBC MACs for arbitrary-length messages: The three-key constructions, Advances in Cryptology, CRYPTO – 2000, pp 197 – 215. URL: https://link.springer.com/chapter/10.1007/3-540-44598-6_12

  4. W. Stallings. NIST Block Cipher Modes of Operation for Confidentiality, Cryptologia, 2010, no. 34 (2), pp. 163 – 175.

  5. Solomatin M.S., Mitrofanov D.V. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/published.php?ID=112926. DOI: 10.34759/trd-2020-110-16.

  6. Mytsko E.A., Mal’chukov A.N., Ivanov S.D. Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2018, no. 6, pp. 22 – 29.

  7. Papadimitratos P., Haas Z.J. Secure message transmission in mobile ad hoc networks, Ad Hoc Networks, 2003, no. 1, pp. 193 – 209. URL: https://doi.org/10.1016/S1570-8705(03)00018-0

  8. Ben Othman S., Alzaid H., Trad A., Youssef, H. An efficient secure data aggregation scheme for wireless sensor networks, Information, Intelligence, Systems and Applications (IISA), 2013 4th International Conference on Digital Object Identifier, 2013, pp. 1 – 4. DOI: 10.1109/IISA.2013.6623701

  9. Fangfang Dai, Yue Shi, Nan Meng, Liang Wei and Zhiguo Ye. From Bitcoin to Cybersecurity: Comparative Study of Blockchain Application and Security Issues, 4th International Conference on Systems and Informatics (ICSAI 2017), Hangzhou, China, 2017. DOI: 10.1109/ICSAI.2017.8248427

  10. Dworkin M. Recommendatin for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality, NIST Special Publication, 2004, SP 800-38C. DOI:10.6028/NIST.SP.800-38C

  11. Iwata T., Kurosawa K. OMAC: one-key CBC MAC, Fast Software Encryption, 2003, pp. 129 – 153.

  12. Smirnov A.A. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104214

  13. Tanygin M.O., Alshaia Kh.Ya., Altukhova V.A., Marukhlenko A.L. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel’naya tekhnika, informatika. Meditsinskoe priborostroenie, 2018, vol. 8, no. 4 (29), pp. 63 – 71.

  14. Tanygin M.O. Teoreticheskie osnovy identifikatsii istochnikov informatsii, peredavaemoi blokami ogranichennogo razmera (Theoretical basis for identifying sources of information transmitted by limited size blocks), Kursk, Universitetskaya kniga, 2020, 198 p.

  15. Predvaritel’nyi natsional’nyi standart RF. PNST 354-2019. Informatsionnye tekhnologii. Internet veshchei. Protokol besprovodnoi peredachi dannykh na osnove uzkopolosnoi modulyatsii radiosignala (NB-Fi) (Preliminary National Standard of the Russian Federation. PNST 354-2019. Information technology. Internet of things. Wireless data transfer Protocol based on narrow-band radio signal modulation). URL: http://docs.cntd.ru/document/1200162760

  16. Predvaritel’nyi natsional’nyi standart RF. Informatsionnye tekhnologii. Internet veshchei. Protokol obmena dlya vysokoemkikh setei s bol’shim radiusom deistviya i nizkim energopotrebleniem (Preliminary national standard of the Russian Federation. Information technology. Internet of Things. Exchange protocol for high-capacity networks with a long range and low power consumption). URL: http://docs.cntd.ru/document/554596382

  17. 802.15.4-2015. IEEE Standard for Low-Rate Wireless Personal Area Networks, IEEE Computer Society. URL: https://standards.ieee.org/standard/802_15_4-2015.html

  18. Khoup G. Proektirovanie tsifrovykh vychislitel’nykh ustroistv na integral’nykh sistemakh (Digital computing devices design based on integrated systems), Moscow, Radio i svyaz’, 1983, 538 p.

  19. Tanygin M.O. Alshaeaa H.Y. Efremov M.A. Analysis of the Secure Data Transmission System Parameters, Advances in Automation Proceedings of the International Russian Automation Conference, RusAutoCon 2019, September 8–14, 2019, Sochi, Russia, pp. 675 – 683. DOI: 10.1007/978-3-030-39225-3

  20. Dzhon F., Ueikerli M. Proektirovanie tsifrovykh ustroistv (Design of digital devices), Moscow, Postmarket, 2002, 543 p.

  21. Sokhrannyi E.P. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/published.php?ID=115156. DOI: 10.34759/trd-2020-111-13

  22. Turchak L.I. Chislennye metody (Numerical methods), Moscow, Nauka, 1987, 320 p.

  23. Tanygin M.O. Method of Control of Data Transmitted Between Software and Hardware, Materiali IV Mizhnarodnoї konferentsiї molodikh vchenikh CSE «Komp’yuterni nauki ta inzheneriya», L’viv, Vidavnitstvo Lvivskoї politekhniki, 2010, pp. 344 – 345.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход