Arranging measurements while shipborne aerial vehicles testing under non-test-ground conditions of the open sea


DOI: 10.34759/trd-2020-115-10

Аuthors

Tugolukov V. A.

The Test Center “Morskoy” of State Fly-Test Center named V.P. Chkalov, 3/61, Gagarin str., Primorskiy-1, 298177, Feodosia, Crimea Republic

e-mail: variant_co@mail.ru

Abstract

The article considers methodological issues arranging external trajectory measurements of the shipborne aviation systems’ parameters while the shipborne aerial vehicles testing under the open sea conditions and absence of the lack of the route measuring test-ground within the water area for the State testing of aircraft carrier.

The author suggested a differential measuring method based on navigation parameters correction of the shipborne aerial vehicles relative to the aircraft carrier, and transmitting the set of corrections to measurements of all navigation satellites to the definable points. These corrections can be used at the satellite observations at the definable points with measuring at the coastal geodetic station with known coordinates of pseudo-range to all “visible” satellites and computing its measured coordinates, and then the measured ranges as well (according to the measured coordinates of both station and satellites). Then further processing information on computing the root-mean-square error of lateral and vertical deflections of the shipborne aerial vehicle while takeoff and landing on the ship, and at combat control from an aircraft carrier ship and / or from a shipborne radar patrol and guidance aircraft is proposed is being performed.

The accompanying monitoring of the achieved values of the aircraft carrier efficiency levels is being performed, and the accuracy characteristics of the shipborne aircraft is being obtained to assess the feasibility of the requirements for the carried aviation systems and for the aircraft carrier ship as a whole.

Keywords:

aircraft carrier, carried aviation systems, optimization, global navigation satellite system, differential method, information processing

References

  1. Antonov Yu.S. Vestnik Akademii voennykh nauk, 2005, no. 3, pp. 128 – 138.

  2. Lebedev A.A. Vvedenie v analiz i sintez system (Introduction to Systems Analysis and Synthesis), Moscow, Izd-vo MAI, 2001, 230 p.

  3. Malyshev V.V. Metody optimizatsii v zadachakh sistemnogo analiza i upravleniya (Optimization methods in problems of system analysis and control), Moscow, Izd-vo MAI-PRINT, 2010, 440 p.

  4. Moiseev N.N., Ivanilov Yu.P., Stolyarov E.M. Metody optimizatsii (Optimization methods), Moscow, Nauka, 1978, 358 p.

  5. Polenin V.I. Voennaya mysl’, 2004, no. 3. URL: http://militaryarticle.ru/voennaya-mysl/2004-vm/9430-rimenenie-verojatnostnyh-modelej-pri-planirovanii

  6. Demidov B.A., Lukhanin M.I., Velichko A.F., Naumenko M.V. Sistemnaya metodologiya planirovaniya razvitiya, predproektnykh issledovanii i vneshnego proektirovaniya vooruzheniya i voennoi tekhniki (System methodology for development planning, pre-design research and external design of weapons and military equipment), Kiev, Izd-vo Stilos, 2011, 464 p.

  7. Kudryavtsev E.M. Issledovanie operatsii v zadachakh, algoritmakh i programmakh (Operations research in problems, algorithms and programs), Moscow, Radio i svyaz’, 1984, 396 p.

  8. Polyakov V.B., Neretin E.S., Ivanov A.S., Budkov A.S., Dyachenko S.A., Dudkin S.O. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93459

  9. Yatsenkov V.S. Osnovy sputnikovoi navigatsii: sistemy GPS, NAVSTAR i GLONASS (Basics of satellite navigation: GPS, NAVSTAR and GLONASS systems), Moscow, Radio i svyaz’, 2005. 27 p.

  10. Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of developing and functioning), Moscow, Radiotekhnika,
    2010, 800 p.

  11. Global’naya navigatsionnaya sputnikovaya sistema. Apparatura potrebitelei. Klassifikatsiya. GOST R 52457-2005 (Global navigation satellite system. Consumer equipment. Classification. State Standard R 52457-2005), Moscow, Standartinform, 2007, 5 p.

  12. Global’naya navigatsionnaya sputnikovaya sistema. Metody i tekhnologii vypolneniya geodezicheskikh i zemleustroitel’nykh rabot. Opredelenie otnositel’nykh koordinat po izmereniyam psevdodal’nostei. GOST R 53607-2009 (Global navigation satellite system. Methods and technologies for performing geodesic and land surveying works. Determination of relative coordinates from pseudorange measurements. State standard R 53607-2009), Moscow, Standartinform, 2010, 14 p.

  13. Yanchinin V. Efemeridy sputnikov. URL: http://top-formula.net/language/ ru/эфемериды-спутников.

  14. Tyapkin V.N., Garin E.N. Metody opredeleniya navigatsionnykh parametrov podvizhnykh sredstv s ispol’zovaniem sputnikovoi navigatsionnoi sistemy GLONASS (Methods for navigation parameters determining of mobile aids using the GLONASS satellite navigation system), Krasnoyarsk, Sibirskii federal’nyi universitet, 2012, 260 p.

  15. Malyshev V.V., Starkov A.V., Fedorov A.V. Trudy MAI, 2012, no. 57. URL: http://trudymai.ru/eng/published.php?ID=30798

  16. Apparatura radionavigatsionnaya global’noi navigatsionnoi sputnikovoi sistemy i global’noi sistemy pozitsionirovaniya. Sistemy koordinat: metody preobrazovaniya koordinat opredelyaemykh tochek. GOST R 51794-2001(Radio navigation equipment of the global navigation satellite system and the global positioning system. Coordinate systems: methods for transforming of the coordinates of the points to be determined. State standard R 51794-2001), Moscow, Gosstandart Rossii, 2001, 10 p.

  17. Rezinchenko V.I., Shashkov A.A. Navigatsiya i gidrografiya, 1996, no. 2, pp. l15 – 119.

  18. Povalyaev A.A. Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositel’nykh koordinat (Satellite radio navigation systems: time, clock readings, measurements forming and of relative coordinates determining), Moscow, Radiotekhnika, 2008, 328 p.

  19. Aleksandrov E.E., Kuznetsov Yu.A. Radioelektronika. Informatika. Upravlenie, 2002, no. 2, pp. 65 – 69.

  20. Borovitskii V.G., Zholnerov V.S., Zarubin S.P. et al. Trudy ILA RAN, 2005, no. 13, pp. 160 – 169.

  21. Bar-Shalom Ya., Li Kh.R. Traektornaya obrabotka. Printsipy, sposoby i algoritmy (Trajectory processing. Principles, methods and algorithms), Moscow, MGTU im. N.E. Baumana, 2011, vol. 2, 240 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход