The experience of CAD/CAM systems application in educational process at the basic department of “Aircraft engineering”


DOI: 10.34759/trd-2020-115-15

Аuthors

Chigrinets E. G.*, Rodriges S. B.**, Chotchayeva S. K.***, Sorokin A. V.

Don State Technical University, DSTU, 1, Gagarin square, Rostov-on-Don, 344003, Russia

*e-mail: egchigrinets@gmail.com
**e-mail: sb_rodriguez@mail.com
***e-mail: semo_s@mail.ru

Abstract

Computer engineering gains more and more importance in the modern world due to the 3D solid-state modelling, analysis and simulation integration. In this aggregate of methods and means for the engineering problems solving, the groundbreaking role is being assigned to creation and application of the so-called digital twins, which are based on digital representation of separate real components, products, technologies and processes, allowing performing a wide specter of analysis and virtual simulations. The object location herewith does not matter.

Practical application training of the CAM systems is a weak side of the DSTU (Don State Technical University) compared to the theoretical preparation.

This article demonstrates the application example of the NX computer-aided manufacturing system by Siemens PLM Software in the engineering personnel training for an aircraft-building enterprise.

In the framework of their practical training, the students collected information that has become the initial data for the machining process simulation of the especially critical helicopter parts employing the NX CAM. Managing routines for the five-axis HURON K2X8 FIVE machining center were developed applying the «Machining» module, analysis of various cutting strategies was performed, visualization of the material removal was carried out, and the machine-tool operation simulation was demonstrated

Verification of the developed managing routines allowed revealing overcuts and and rough surfaces on the completed part, collisions of the machining center actuating devices with rigging and workpiece, tools contact during rapid feed, excessive and insufficient machining allowances. The revealed defects were corrected prior to program run on a CNC machine.

The demand for graduates of the engineering specialties are largely determined by the knowledge of modern CAD/CAM system at the technological preparation of production and the ability to employ them. The increased interest of today’s young people in computer technologies raises the interest of the students in the study and improves apprehension of the educational material. However, introduction of computer engineering methods into educational process faces certain difficulties as well. The main one is the insufficiently equipped laboratories of the University. Very often, the such programs implementation is being supported exclusively by the enthusiasm of individual tutors and department staff members.

This publication was prepared based on the cooperation between the department of Aircraft engineering of Don State Technical University and the division of Computer Aided Manufacturing of “Rostvertol Helicopters Co.” within the framework of “The new personnel of the military-industrial complex” project.

Keywords:

CAD/CAM system, NX CAM, Siemens NX, machining, five-axis milling, engineering education

References

  1. Mas F. et al. A review of PLM impact on US and EU Aerospace industry, 6th MESIC Manufacturing Engineering Society International Conference, 2015, no. 132, pp. 1053 – 1060. DOI: 10.1016/j.proeng.2015.12.595

  2. Vila C. et al. Project-based collaborative engineering learning to develop Industry 4.0 skills within a PLM framework, Manufacturing engineering society international conference (MESIC), 2017, vol. 13, pp. 1269 – 1276. DOI: 10.1016/j.promfg.2017.09.050

  3. Chigrinets E.G., Verchenko A.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102420

  4. Polyakov A.A., Zashchirinskii S.A. Trudy MAI, 2019, no. 107. URL: http://trudymai.ru/eng/published.php?ID=107877

  5. Kabanov A.A. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35910

  6. Nair P.R. et al. ACAM: A CNC Simulation Software for Effective Learning, International Conference on Robotics and Smart Manufacturing (RoSMa), 2018, no. 133, pp. 823 – 830. DOI: 10.1016/j.procs.2018.07.113

  7. Dubovska R., Jambor J., Majerik J. Implementation of CAD/CAM system CATIA V5 in Simulation of CNC machining process, 24th DAAAM International Symposium on Intelligent Manufacturing and Automation, 2014, no. 69, pp. 638 – 645. DOI: 10.1016/j.proeng.2014.03.037

  8. Channarong T., Suthep B. Virtual reality barrel shaft design and assembly planning accompany with CAM, 14th Global Congress on Manufacturing and Management, 2019, no. 30. pp. 677 – 684. DOI: 10.1016/j.promfg.2019.02.063

  9. Altintas Y. Virtual High Performance Machining, 7th Conference on High Performance Cutting, 2016, no. 46, pp. 372 – 378. DOI: 10.1016/j.procir.2016.04.154

  10. Salah B., Darmoul S. Engineering technology education based on the reconfigurable manufacturing paradigm: a case study, 8th Conference on learning factories 2018 – Advanced engineering education and training for manufacturing innovation, 2018, no. 23, pp. 87 – 92. DOI: 10.1016/j.promfg.2018.03.166

  11. Weihang Z. et al Engineering design and manufacturing education through research experience for high school teachers, 46th SME North American Manufacturing Research Conference (NAMRC 46), 2018, no.1, pp. 1340 – 1348. DOI: 10.1016/j.promfg.2018.07.127

  12. Yixian D. et al. CAD/CAM courses integration of theoretical teaching and practical training, Social and Behavioral Sciences, 2014, no.116, pp. 4297 – 4300. DOI: 10.1016/j.sbspro.2014.01.935

  13. Householder D.L., Hailey C.E. Incorporating engineering design challenges into STEM courses, 2012, National center for engineering and technology education, 67 p.

  14. Vijayan K.K., Mork O.J. IdeaLab: a learning factory concept for Norwegian manufacturing SME, 10th conference on learning factories (CLF), 2020, no. 45, pp. 411 – 416. URL: https://doi.org/10.1016/j.promfg.2020.04.045

  15. Guglieri G. Hanus D., Revel P. A proposal for ensuring the quality of aerospace engineering higher education in Europe, International Conference on Air Transport (INAIR), 2017, no. 28, pp. 207 – 216. DOI: 10.1016/j.trpro.2017.12.187

  16. Govorkov A.S. Trudy MAI, 2011, no. 48. URL: http://trudymai.ru/eng/published.php?ID=27146

  17. Kolesnikov A.V. et al. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta, 2013, no. 12 (83), pp. 73 – 78.

  18. Lavrent’eva M.V., Ch’en Kh.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2013, vol. 15, no. 6-2, pp. 395 – 399.

  19. Kolmos A., Graaff E. Problem-Based and Project-Based Learning in Engineering Education, Cambridge Handbook of Engineering Education Research, Cambridge, 2015, pp. 141 – 160. DOI: 10.1017/CBO9781139013451.012

  20. Churkin M.G., Pozdyshev A.I., Mal’tsev I.V. Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.E. Alekseeva, 2015, no. 2 (109), pp. 113 – 122.

  21. Wagner E. A new optimization CAD/CAM/CAE technique for the processing of the complex 3D surfaces on 5 axes CNC machines, 8th International Conference Interdisciplinary in Engineering (INTER-ENG 2014), 2015, no. 19, pp. 34 – 39. DOI: 10.1016/j.protcy.2015.02.006

  22. Vedmid’ P.A., Sulinov A.V. Programmirovanie obrabotki v NX CAM (Processing programming in NX CAM), Moscow, DMK Press, 2014, 304 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход