Dynamic behavior of thin-walled structures with elastic filler under the action of a moving load


Antufiev B. A.*, Sukmanov I. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: antufjev.bor@yandex.ru
**e-mail: igor8385@yandex.ru


The problem of dynamic deformation of a cylindrical shell with a collapsing elastic base under the action of internal pressure on the free part of the cylinder and a movable radial load is solved. The deformation of the structure is considered to be axisymmetric and is described by the equations of the moment classical theory of shells, and the filler obeys the Winkler hypothesis. Similar problems arise in the design of solid propellant rocket engines (solid propellant rocket engines). In this case, the destruction of the filler is explained by fuel burnout, and the internal pressure is due to the action of combustion products. A movable radial load simulates a pressure wave, as a result of which the problem of determining the critical speed of its movement arises, at which the solid propellant rocket walls lose stability. We will consider the solution of the problem in tw o versions – quasi-static and dynamic, which will allow us to compare solutions and choose the optimal one. In the quasi-static version of the solution, the deformed state of the shell, determined by its deflection w, does not depend on time t, but changes only along the x-axis. Examples are considered and parametric studies are carried out. In the dynamic version of the problem statement, we assume that the deformed state of the shell depends not only on its longitudinal coordinate x, but also on the time t. We will consider two types of pinning the ends of the shell – hinged pinning and rigid pinning. From a comparison of the graphs obtained, it can be seen that with rigid pinching of the ends of the shell, the natural vibration frequencies are higher than with their hinged support.


cylindrical shell, collapsing elastic base, moving load, critical motion velocities, natural oscillation frequencies, quasi-static and dynamic solutions


  1. Antuf'ev B.A. Dinamicheskoe i impul'snoe deformirovanie elementov tonkostennykh konstruktsii (Dynamic and impulse deformation of elements in thin-walled structures), Moscow, Izd-vo MAI, 2015, 163 p.

  2. Ghugal Y.M., Shimpi R.P. A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates, Journal of Reinforced Plastics and Composites, 2002. URL: https://doi.org/10.1177/073168402128988481

  3. Zveryaev E.M. Konstruktivnaya teoriya tonkikh uprugikh obolochek (Constructive theory of thin elastic shells), Preprint №33. Moscow, IPM im. M.V. Keldysha, 2016, 25 p.

  4. Vol'mir A.S. Nelineinaya dinamika plastin i obolochek (Nonlinear dynamics of plates and shells), Moscow, Nauka, 1972, 432 p.

  5. Konoplev Yu.G., Yakushev R.S. Lektsii po dinamike sooruzhenii s podvizhnymi nagruzkami (Lectures on the dynamics of structures with moving loadings), Kazan', Otechestvo, 2003, 280 p.

  6. Panovko Ya.G., Gubanova I.I. Ustoichivost' i kolebaniya uprugikh system (Stability and vibrations of elastic systems), Moscow, Nauka, 1979, 384 p.

  7. Yakushev V.Z. Issledovaniya po teorii plastin i obolochek, 1990, no. 20, pp. 233 – 307.

  8. Firsanov V.V., Zoan K.Kh. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100589

  9. Firsanov V.V. The stressed state of the “boundary layer” type cylindrical shells investigated according to a nonclassical theory, Journal of machinery, manufacture and reliability, 2018, vol. 47, no. 3, pp. 241 – 248. DOI: 10.3103/S1052618818030068

  10. Firsanov V.V., Vo A.Kh. Trudy MAI, 2018, no. 102. URL: http://trudymai.ru/eng/published.php?ID=98866

  11. Firsanov V.V., Vo A.Kh., Chan N.D. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102130

  12. Erkov A.P., Dudchenko A.A. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100622

  13. Alfutov N.A. Osnovy rascheta na ustoichivost' uprugikh system (Basics of calculating the stability of elastic systems), Moscow, Mashinostroenie, 1978, 312 p.

  14. Zhou F., Chen Z., Fan H., Huang S. Analytical study on the buckling of cylindrical shells with stepwise variable thickness subjected to uniform external pressure, Mechanics of Advanced Materials and Structures, 2016, vol. 23, no. 10. DOI: 10.1080/15376494.2015.1068401

  15. Grishanina T.V., Shklyarchuk F.N. Kolebaniya uprugikh system (Vibrations of elastic systems), Moscow, Izd-vo MAI, 2013, 100 p.

  16. Karpov V.V., Ignat'ev O.V., Semenov A.A. Inzhenerno-stroitel'nyi zhurnal, 2017, no. 6 (74), pp. 147 – 160. DOI: 10.18720/MCE.74.12

  17. Vasil'ev V.V., Lur'e S.A. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1990, no. 6, 139 - 146.

  18. Aleksandrov A.V., Potapov V.D. Osnovy teorii uprugosti i plastichnosti (Fundamentals of the theory of elasticity and plasticity), Moscow, Vysshaya shkola, 1990, 400 p.

  19. Novozhilov V.V., Chernykh K.F., Mikhailovskii E.I. Lineinaya teoriya tonkikh obolochek (Linear theory of thin shells), Leningrad, Politekhnika, 1991, 656 p.

  20. Firsanov V.V. Problemy mashinostroeniya i nadezhnosti mashin, 2018, no. 3, pp. 44 – 51.


mai.ru — informational site MAI

Copyright © 2000-2021 by MAI