Tightness analysis method for flange connection of pipes with metal Z-shape seal during the influence of external axial force

Аuthors

Shishkin S. V., Boikov A. A.*

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: a.boickov@yandex.ru

Abstract

The most common problem in flange connections of pipes is to ensure their tightness during the functioning. At the same time it is unacceptable to design constructions of flange connections too strong and heavy, because it can lead to increasing of loads, acting on a flying vehicle. That’s why it is necessary to have a method of tightness analysis. In this article connection with Z-shape seal is estimated during the phase of loading by external axial force. The problem is – to obtain relations, which allows to calculate increment of contact pressure between edge of the seal and surface of flange. It allows to calculate total contact pressure and use it in tightness analysis of connection by means of Kozeni-Karman’s theory of equivalent porous layer. According to this theory, flanges and seal are estimated as rings with high curvature and modeled by means of theory of axisymmetric deformation of K.B. Bitseno. Problem is solved by using of system of equilibrium equations of flanges and equation of displacements’ compatibility of contact points of flanges and seal. Influence of the pipe on flange was taken into consideration by means of using of system of equations of displacements’ compatibility, applying to the profile of connection of flange and pipe. Displacements of pipe are estimated by means of moment theory of shells, displacements of flange are estimated by means of theory of axisymmetric deformation of K.B. Bitseno. As a result, universal tightness analysis method was obtained, which can be more useful in this case, in comparison with relations, obtained by means of theory of axisymmetric thin plates, applied to flanges, because a lot of flanges in vehicles can’t be modeled as axisymmetric thin plates because of their constructions.

References

1. Khill R. Matematicheskaya teoriya plastichnosti (The mathematical theory of plasticity), Moscow, Gostekhizdat, 1956, 407 p.

2. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Engineering theory of plasticity and creeping), Moscow, Mashinostroenie, 1975, 400 p.

3. Davydov D.V., Myasnyankin Yu.M. Vestnik Voronezhskogo gosudarstvennogo universiteta: Fizika. Matematika, 2009, no. 1, pp. 94 – 100.

4. Ivlev D.D., Maksimova L.A. Izvestiya RAN. Mekhanika tverdogo tela, 2000, no. 3, pp. 131 - 136.

5. Babkin V.T., Zaichenko A.A., Aleksandrov V.V. Germetichnost' nepodvizhnykh soedinenii i gidravlicheskikh system (Tightness of static connections and hydraulic systems), Moscow, Mashinostroenie, 1977, 173 p.

6. Karagel'skii I.V., Alisin A.V. Trenie, iznashivanie i smazka (Friction, deterioration and lubrication), Moscow, Mashinostroenie, 1978, 400 p.

7. Boikov A.A., Shishkin S.V. Kosmonavtika i raketostroenie, 2020, no. 5 (116), pp. 86 – 99.

8. Birger I.A., Iosilevich G.B. Rez'bovye i flantsevye soedineniya (Thread and flange connections), Moscow, Mashinostroenie, 1990, 368 p.

9. Pkhon Kh.K., Sysoev E.O., Kuznetsov E.A., Sysoev O.E. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112828. DOI: 10.34759/trd-2020-110-4

10. Aung Ch.T., Babaitsev A.V. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118135. DOI: 10.34759/trd-2020-113-18

11. Korovaitseva E.A. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118881. DOI: 10.34759/trd-2020-114-04

12. Birger I.A., Mavlyutov R.R. Soprotivlenie materialov (Strength of materials), Moscow, Nauka, 1986, 560 p.

13. Shishkin S.V., Boikov A.A., Kolpakov A.M. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111374. DOI: 10.34759/trd-2019-109-9

14. Sadd Martin H. Elasticity. Theory, Applications and Numerics. Burlington, USA, Elsevier Inc, 2009, 536 p.

15. Boikov A.A., Shishkin S.V. Kosmonavtika i raketostroenie, 2020, no. 4 (115), pp. 45 – 56.

16. Boyarshinov S.V. Osnovy stroitel'noi mekhaniki mashin (The basics of structure mechanics of maschines), Moscow, Mashinostroenie, 1973, 456 p.

17. Zhiber A.V., Yur’eva A.M. On a Certain Class of Hyperbolic Equations with Second-Order Integrals, Journal of Mathematical Sciences, 2021, vol. 252, pp. 168 – 174. DOI: 10.1007/s10958-020-05151-y

18. Bagderina Yu. Yu. Eigenfunctions of Ordinary Differential Euler Operators, Journal of Mathematical Sciences, 2021, vol. 252, pp. 125 – 134. DOI: 10.1007/s10958-020-05147-8

19. Chuiko S. M., Nesmelova O.V. Nonlinear boundary-value problems for degenerate differential-algebraic systems, Journal of Mathematical Sciences, 2021, vol. 252, pp. 463 – 471. DOI: 10.1007/s10958-020-05174-5

20. Grazhdantseva E.Yu. Integral'noe ischislenie funktsii odnoi peremennoi (Integral analysis of one-variable functions), Irkutsk, Izd-vo IGU, 2012, 114 p.

21. Voloshin A.A., Grigor'ev G.T. Raschet i konstruirovanie flantsevykh soedinenii: spravochnik (Analysis and design of flange connections. Reference book), Leningrad, Mashinostroenie, 1979, 128 p.