Radio line resources managing technique, employing space-time signal processing, for situational centers

DOI: 10.34759/trd-2021-116-06


Bydanov E. V.

Military academy of communication of Marshall of the Soviet Union S.M. Budenny, 3, Tikhoretsky Avenue, St. Petersburg, 194064, Russia



Active information development all over the world has predetermined the nature and methods of warfare. If the firepower in the recent past was the basis of success in any armed conflict, as of today, the basis of success is the reduction of the combat control cycles, fr om the target to detection to the decision of its hitting. Modern technical equipment of all management levels, situational centers in particular, allows achieving this. The most problematic side herewith is provision of stable, high-speed radio communication with the units staying in the field conditions, seaborne and airborne, wh ere fiber optic communication lines laying out is impossible.

One of the ways of solving this problem consists in equipping the physical level of the radio lines in use by the technology involving the time-space signal processing. This will enhance the radio line capabilities, and, besides conventional resources managing, allow managing the number of the antennae elements in use on both receiving and transmitting sides.

Analysis of works devoted to the transmitted data security at the physical level of radio links with similar technology revealed negligible attention to the issue. In this regard, the issue of developing a methodology for controlling a multi-antenna radio line is relevant.

A technique for resources managing of a radio line that employs space-temporal signal processing for data transmission and provides operators with modern communication services in in places where the fiber-optic communication lines laying-out is complicated or impossible, has been developed. The proposed approach allows operators data transmission by the radio line more secured from radio monitoring and noise immune. The power consumption herewith of the subscriber terminals of the presented radio line is much less. This is being achieved by a lower signal emission power, compared to subscriber terminals of similar technology, radio lines, and linearly depends on the distance to the subscriber terminal of the subscriber.


radio communication, communication system, multiple input, multiple output, broadband channel, noise immunity, tactical internet, information grid


  1. Yurkov A.S. Tekhnika radiosvyazi, 2020, no. 3 (46), pp. 45 – 52. DOI:10.33286/2075-8693-2020-46-45-52

  2. Revin S.M. Sistemno-konfiguratsionnyi metod proektirovaniya situatsionnykh tsentrov v sisteme kompleksnoi bezopasnosti (System-configuration method for situational centers designing in integrated security system), Moscow, Prospekt, 2010, 147 p.

  3. Bydanov E.V. Sovremennaya nauka: estestvennye i tekhnicheskie nauki, 2020, no. 9, pp. 55 - 62. DOI: 10.37882/2223-2966-2020.09.06

  4. Sistema svyazi takticheskogo zvena upravleniya sukhoputnykh voisk Velikobritanii. URL:

  5. Sovershenstvovanie seti “Takticheskii internet” Sukhoputnykh voisk USA. URL:

  6. Gavrilov A.D., Labunskii A.D. Arsenal otechestva, 2018, no. 3 (35), pp. 21 – 26.

  7. Yoon C.J., Chan C.C. MIL-STD-188-220A parameter optimization for tactical internet, Proceeding of Military Communication Conference, MILCOM – 98, Boston, USA, 1998, pp. 960 - 965. DOI:10.1109/MILCOM.1998.726986

  8. Filatov V.I. Trudy MAI, 2015, no. 81. URL:

  9. Li F., Zhu W., Yin C. Research on the effectiveness evaluation of tactical internet based on dynamic entropy method, Proceeding of 3rd Information technology, networking, electronic and automation control conference, ITNEC-2019, Chengdu, China, 2019, pp. 2500 – 2506. DOI: 10.1109/ITNEC.2019.8729386

  10. Gu G., Peng G. The survey of GSM wireless communication system, Proceeding of International Conference on Computer and Information Application, ICCIA-2010, Tianjin, China, 2010, pp. 121 - 124.

  11. Burki J., Malik F., Mushtaq M. GSM downlink protocol analysis and decoding using open-source hardware and software, Proceeding of 2nd National Conference on Information, Assurance, NCIA, Rawalpindi, Pakistan, 2013, pp. 39 - 46. DOI: 10.1109/NCIA.2013.6725322

  12. Sheikh F. DSP Implementation of Concurrent GSM and CDMA Modems For Software Defined Radios, Proceeding of Fourth International Conference on Information, Communications and Signal Processing, Singapore, 2003, pp. 1732 - 1736. DOI: 10.1109/ICICS.2003.1292763

  13. Bi Q., Vitebsky S. Performance analysis of 3G-1x EVDO high data rate system, Proceeding of 2002 IEEE Wireless Communications and Networking Conference, FL, Orlando, USA, 2002, pp. 389 - 395.

  14. Byun J., Lee J., Park J., Kim S. SINR Enhancement by Antenna Diversity in 1x-EVDO System, Proceeding of 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 2005, pp. 483 - 486. DOI: 10.1109/APS.2005.1552292

  15. Gopal T. EVDO Rev. A Control Channel Bandwidth Analysis for Paging, Proceeding of 2007 Wireless Communications and Networking Conference, Kowlon, China, 2007, pp. 3264 - 3269. DOI: 10.1109/WCNC.2007.601

  16. Viktorov V.A. Sistemy upravleniya, svyazi i bezopasnosti, 2020, no. 1, pp. 1 - 32. DOI: 10.24411/2410-9916-2020-10101

  17. Viktorov V.A., Meshalkin V.A., Saltykov V.M. Sistemy upravleniya, svyazi i bezopasnosti, 2019, no. 4, pp. 246 - 261. DOI: 10.24411/2410-9916-2019-10409

  18. Zvonarev V.V., Pimenov V.F., Popov A.S. Trudy MAI, 2020, no. 111. URL: DOI: 10.34759/trd-2020-111-8

  19. Viktorov V.A., Meshalkin V.A., Saltykov V.M. Sistemy upravleniya, svyazi i bezopasnosti, 2019, no. 4, pp. 381 - 401. DOI: 10.24411/2410-9916-2019-10415

  20. Meshalkin V.A., Viktorov V.A., Bydanov E.V. Materialy II Vserossiiskoi mezhvedomstvennoi nauchno-tekhnicheskoi konferentsii “Informatsionno-upravlyayushchie, telekommunikatsionnye sistemy, sredstva porazheniya i ikh tekhnicheskoe obespechenie”, Penza, Penzenskii gosudarstvennyi universitet, 2020, pp. 13 – 30.

  21. Viktorov V.A. Tekhnika radiosvyazi, 2020, no. 3 (46), pp. 30 - 44.

  22. Proakis J.G., Manolakis D.G. Digital Signal Processing: Principles, Algorithms and Applications. Upper Saddle River, New Jersey: Pearson Prentice Hall, Inc., 2007, 1084 p.

  23. Stein S. Algorithms for ambiguity function processing, IEEE Transactions on acoustics, speech and signal process, 1981, vol. ASSP-29, no. 3, pp. 588 - 599.

  24. Perov A.I. Statisticheskaya teoriya radiotekhnicheskikh system (Statistical theory of radio engineering systems), Moscow, Radiotekhnika, 2003, 400 p.

  25. D'yakonov V.P., Abramenkova I.I. Matlab obrabotka signalov i izobrazheniya (Matlab signal and image processing), Saint Petersburg, Izd-vo Piter, 2002, 608 p.

  26. Adaptivnaya fil'tratsiya tsifrovykh dannykh. URL:

  27. Filatov V.I., Borukaeva A.O., Berdikov P.G., Kulakov D.V. Trudy MAI, 2019, no. 105. URL:

  28. Anritsu Vector Signal Generator MG3710A. URL:

  29. Tsvetkov V.A., Kondrat'eva S.G. Trudy MAI, 2019, no. 108. URL: DOI: 10.34759/trd-2019-108-6

Download — informational site MAI

Copyright © 2000-2022 by MAI