The concept of an onboard radar based on active phased array antenna employing reflector with solid-setting pneumatic frame


DOI: 10.34759/trd-2021-119-12

Аuthors

Demin D. S.1*, Kononenko P. I.**, Lebedenko V. I.2***, Prilutsky A. A.1****, Reznichenko V. I., Sidorchuk E. A.1*****, Sysoev V. K.1******, Khmel D. S.1*******

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: dds@laspace.ru
**e-mail: pavel.kononenko@mail.ru
***e-mail: vil1103836@mail.ru
****e-mail: prilutskiy59@gmail.com
*****e-mail: sidorchuk@laspace.ru
******e-mail: SysoevVK@laspace.ru
*******e-mail: khmel@laspace.ru

Abstract

The article considers a space onboard radar based on a hybrid mirror antenna for the L or P band and active phased array antenna transceiver modules, scanning along the forming surface of a cylindrical paraboloid of its reflector. The authors suggested using effective area of the reflecting surface of its reflector no less than 100 m2 for the L band, and no less than 160 m2 for the P band to obtain a high gain, and substantiated the requirements to the shape stability as well. For reflector of such a considerable size, the possibility of a light transformable structure development by forming a surface, employing flexible reflecting metallized grid, fixed on the frame being arranged under conditions of zero-grzvity by gas filling and hardening of the pneumo-frame was substantiated with account for limitations imposed by the nose cone of a carrier rocket. On orbital injection the soft shells and flexible grid of the transformable reflector structure are being rolled up and packed in a container of relatively small dimensions and easily withstand acting vibration and dynamic loads as a part of a spacecraft at the stage of operation and at insertion. The article presents the layout of the onboard radar complex with hybrid mirror antennae for L or P band as a part of basic module of the «Navigator» support systems. The possibility of the reflector frame rigid structure creating from the composite material based on pneumo-frame shells under conditions of the spaceflight was confirmed. Hardening technique for pneumo-frame applying the infusion of a binder being solidified was tested on the example of the cylindrical thin-walled beam. The article presents the results of the transformable structure of the frame panel testing on functioning and strength, as well as verification of bending computations by stress-strain state modeling of a composite material. Its stiffness and weight evaluation is presented either. The transformable structure endurance to the cosmic space factors impact was estimated, and measures to its enhancing were being suggested. A number of passive methods have been proposed for stability ensuring of the reflector shape. Methods for the shape monitoring and correcting, and methods for the deformations impact compensating by hardware-software means of the radar system were considered. In particular, the expediency of the mirror shape correction by mechanical actuators, as well as by phase correction of signals to align the front of the wave being radiated, was justified.

The systematic approaches, substantiated in the article, such as deformation impact compensation; forming large-size reflector with rigid frame from composite materials by the gas filling and soft shells hardening under conditions of the space flight may find application for radar complex developing based the active phased array antenna with a hybrid mirror antenna.


Keywords:

radar, AFAR, the mirror system design

References

  1. Korovaitseva E.A. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118881. DOI: 10.34759/trd-2020-114-04

  2. Lopatin A.V., Rutkovskaya M.A Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2007, no. 2 (15), pp. 51 — 57.
  3. Lopatin A.V., Rutkovskaya M.A. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2007, no. 3 (16), pp. 78 — 81.
  4. Petrov A.S., Prilutskii A.A., Volchenkov A.S. Vestnik NPO im. S.A. Lavochkina, 2018, no. 1, pp. 55 — 64.
  5. Petrov A.S., Prilutskii A.A., Volchenkov A.S. Vestnik NPO im. S.A. Lavochkina, 2018, no. 4, pp. 80 — 88.
  6. Prilutskii A.A., Sidorchuk E.A., Petrov A.S. Vestnik NPO im. S.A. Lavochkina, 2017, no. 4, pp. 160 — 170.
  7. Reutov A.S., Shishlov A.V. Antenny, 2005, no. 1, pp. 63 — 67.
  8. Skobelev S.P. Fazirovannye antennye reshetki s sektornymi partsial’nymi diagrammami napravlennosti (Phasing of antennae array with partial directional diagrams), Moscow, Fizmatlit, 2010, 319 p.
  9. Finchenko V.S., Pichkhadze K.M. Proektirovanie avtomaticheskikh kosmicheskikh apparatov dlya fundamental’nykh nauchnykh issledovanii. Osnovy proektirovaniya naduvnykh kosmicheskikh konstruktsii (Design of automatic spacecraft for fundamental scientific research), Moscow, MAI-print, 2012, pp. 466 — 525.
  10. Finchenko V.S., Pichkhadze K.M., Efanov V.V. Naduvnye elementy v konstruktsiyakh kosmicheskikh apparatov — proryvnaya tekhnologiya v raketno-kosmicheskoi tekhnike: monografiya (Inflatable elements in spacecraft structures — the breakthrough technology in space-rocket engineering), Khimki, NPO Lavochkina, 2019, pp. 416 — 450.
  11. Sentsov A.A., Nenashev V.A., Ivanov S.A., Turnetskaya E.L. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156227. DOI: 10.34759/trd-2021-117-08
  12. Nizametdinov F.R., Sorokin F.D., Ivannikov V.V. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111337. DOI: 10.34759/trd-2019-109-2
  13. Dyukov V.A. Trudy MAI, 2021, no 116. URL: http://trudymai.ru/eng/published.php?ID=121089. DOI: 10.34759/trd-2021-116-12
  14. Allred R.E., Hoyt A.E. UV regidizable carbon-reinforced isogrid inflatable booms, AIAA 2002-1202, 2002. DOI: 10.2514/6.2002-120215.
  15. Cadogan D.P., Scarborough S.E. Rigidizable materials for use in gossamer space inflatable structures, 19th AIAA Applied Aerodynamics Conference, AIAA 2001-1417, 2001. DOI:10.2514/6.2001-1417
  16. Curlander J., McDonough R. Synthetic Aperture Radar: Systems and Signal Processing, New York, Wiley, 1991, 163 p.
  17. Guidanean K., Williams T. An inflatable truss structure with complex joints, AIAA-98-2105, 1998, DOI:10.2514/6.1998-2105
  18. Kildal P.S. Aperture efficiency and linear phase center of parabolic cylindrical reflector antenna, IEEE Transactions on Antennas and Propagation, 1984, vol. 32, no. 6, pp. 553 — 561. DOI:10.1109/TAP.1984.1143370
  19. Xiang B., Wang C., Lian P. Effect of Surface Error Distribution and Aberration on Electromagnetic Performance of a Reflector Antenna, International Journal of Antennas and Propagation, 2019, Article ID 5062545.URL: https://doi.org/10.1155/2019/5062545
  20. Furber M., Blaszak D., Pieri M. Correctability modeling of a large deformable mirror, In Proceedings of SPIE, 1994, vol. 2201, URL: https://doi.org/10.1117/12.176119
  21. Robertson H. Development of an active optics concept using a thin deformable mirror, Technical report, NASA CR-1593, 1970. URL: https://openlibrary.org/books/OL5392599M/Development_of_an_active_optics_concept_using_a_thin_deformable_mirror
  22. Diouf A., Legendre A. Open-loop shape control for continuous microelectromechanical system deformable mirror, Applied Optics, 2010, vol. 49, no. 31. URL: https://studylib.net/doc/11736232/open-loop-shape-control-for-continuous-microelectromechan

  23. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход