On the correctness condition in boundary value problems of gradient elasticity theory


DOI: 10.34759/trd-2021-120-02

Аuthors

Lurie S. A.1*, Shramko K. K.2**

1. Institute of Applied Mechanics of Russian Academy of Science, IAM RAS, 32a, Leninskii av., Moscow, В-334, GSP-1, 119991, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: salurie@mail.ru
**e-mail: konstantin_home@mail.ru

Abstract

The main subject of study in this article concerns the variational formulation of gradient models of elasticity and specific symmetry conditions in gradient theories of elasticity of a general form. Special attention is being paid to the symmetry conditions, which are a consequence of the fact that it is possible to change the order of differentiation in the components of the displacement gradient tensor in the potential energy density expression. First, the conditions of symmetry in the theory of elasticity and gradient elasticity are discussed, the features of the properties of symmetry in gradient models are noted in comparison with the classical theory of elasticity. Then the variational statements of gradient elasticity and the structure of the boundary conditions following from this statement are briefly discussed. Finally, the conditions for the formulation correctness of the of boundary value problems and their connection with the symmetry property of gradient elastic modules are established. This article presents the symmetry conditions analysis for components of the generalized elastic properties tensor of gradient models of elasticity. It is demonstrated that one of the conditions is related to the correctness of boundary value problems of gradient elasticity theories. It is established for the first time that physically and energetically insignificant components of the elastic modulus tensor may appear on the surface under boundary static conditions for stresses (with variations in displacements) and under boundary conditions on the contours of edges, which can lead to significant errors in solving applied problems. A procedure allowing always obtaining correct boundary conditions for arbitrary optioins of gradient elasticity theories is presented.

Keywords:

combination of movements, circular movements, elliptical trajectory, circular trajectory, multiples of speed

References

  1. Toupin R.A. Elastic materials with couple stresses, Archive for Rational Mechanics and Analysis, 1962, vol. 11, pp. 385-414.

  2. Mindlin R.D. Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 1964, no. 16, pp. 51-78.

  3. Mindlin R.D., Eshel N.N. On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, 1968, no. 4, pp. 109-124. DOI:10.1016/0020-7683(68)90036-X

  4. Altan B.S., Aifantis E.C. On the structure of the mode-III crack-tip in gradient elasticity, Scripta Metallurgica Et Materialia, 1992, no. 26, pp. 319ndash;324. DOI:10.1016/0956-716X(92)90194-J

  5. Vardoulakis I., Georgiadis H.G. SH surface waves in a homogeneous gradientelastic half-space with surface energy, Journal of Elasticity, 1997, no. 47, pp. 147-165. URI: http://hdl.handle.net/123456789/12434

  6. S. Li, I. Miskioglu, B.S. Altan. Solution to line loading of a semi-infinite solid in gradient elasticity, International Journal of Solids and Structures, 2004, no. 41, pp. 3395-3410. DOI: 10.1016/j.ijsolstr.2004.02.010

  7. Aifantis E.C. et al. The role of interfaces in enhancing the yield strength of composites and polycrystals, Journal of the Mechanics and Physics of Solids, 2005, no. 53, pp. 1047-1070. DOI:10.1016/j.jmps.2004.12.003

  8. Fleck N.A., Hutchinson J.W. Strain gradient plasticity. Advances in Applied Mechanics, Academic Press, New York, 1997, vol. 33, pp. 295-361. DOI:10.1016/S0065-2156(08)70388-0

  9. Liu X.N., Huang G.L., Hu, G.K. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, Journal of the Mechanics and Physics of Solids, 2012, no. 60, pp. 1907ndash;1921. DOI:10.1016/j.jmps.2012.06.008

  10. Ma H.M., Gao X.-L., Reddy J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 2008, no. 56, no. 3379-3391. DOI:10.1016/j.jmps.2008.09.007

  11. Solyaev Yu.O. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/eng/published.php?ID=24316

  12. Krivenrsquo; G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03

  13. Lam D.C.C., Yang F., Chonga A.C.M., Wang J., Tong P. Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 2003, no. 51, pp. 1477-1508. DOI:10.1016/S0022-5096(03)00053-X

  14. Wang Q, Wang C.M. The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnology, 2007, no. 18, pp. 075702. DOI: 10.1088/0957-4484/18/7/075702

  15. Forrest S. Mechanics of generalized continua: construction by homogenization, Journal de Physique IV, 1998, no.8, pp. 39ndash;48. DOI: 10.1051/jp4:1998405

  16. Gusev A.A., Lurie S.A. Strain-gradient elasticity for bridging continuum and atomistic estimates of stiffness of binary Lennard-Jones crystals, Advanced Engineering Materials, 2010, no.12, pp. 529ndash;533. DOI: 10.1002/adem.201000004

  17. Auffray N., Le Quang H., He H.C. Matrix representations for 3D strain-gradient elasticity, Journal of the Mechanics and Physics of Solids, 2013, no. 61, pp. 1202-1223. DOI:10.1016/j.jmps.2013.01.003

  18. Papanicolopulos S.-A. Chirality in isotropic linear gradient elasticity, International Journal of Solids and Structures, 2011, no. 48, pp. 745-752. DOI:10.1016/j.ijsolstr.2010.11.007

  19. Dellrsquo;Isola F., Sciarra G., Vidoli S. Generalized Hookersquo;s law for isotropic second gradient materials, Proceedings of The Royal Society A. Mathematical Physical and Engineering Sciences, 2009, A 465, pp. 2177-2196. DOI:10.1098/rspa.2008.0530

  20. Auffray N., Bouchet R., Breacute;chet Y. Deviation of anisotropic matrix for bi-dimensional strain-gradient elasticity behavior, International Journal of Solids and Structures, 2009, no. 46, pp. 440-454. DOI:10.1016/j.ijsolstr.2008.09.009

  21. Klimov A.K., Klimov D.A., Nizovtsev V.E., Ukhov P.A. Trudy MAI, 2013, no. 67, URL: http://trudymai.ru/eng/published.php?ID=41486

  22. Gusev A.A., Lurie S.A. Symmetry conditions in strain gradient elasticity, Mathematics and Mechanics of Solids, 2017, no. 22(4), pp. 683ndash;691. DOI: 10.1177/1081286515606960

  23. Vasiliev V.V., Lurie S.A. On correct nonlocal generalized theories of elasticity, Physical Mesomechanics, 2016, no. 19(3), pp. 269-281. DOI:10.1134/S102995991603005X

  24. Lurie S.A., Belov P.A., Solyaev Y.O., Aifantis E.C. On one class of applied gradient models with simplified boundary problems, Materials Physics and Mechanics, 2017, no. 32(3), pp. 353-369.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход