Methodology and algorithm for constructing a computer network based on a wireless protocol


DOI: 10.34759/trd-2021-121-20

Аuthors

Borzov D. B.1*, Chernyshev A. A.1**, Sizov A. S.1, Sokolova Y. V.2***

1. South-Western State University, 94, 50-let Oktyabrya str., Kursk, 305040, Russia
2. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: bоrzоvdb@kursknеt.ru
**e-mail: sir.andry.swsu@gmail.com
***e-mail: jv.sokolova@mail.ru

Abstract

With the wireless protocols development, reconfigurable computing systems consisting of multiple processor modules keep on evolving. Systems based on wireless protocols are being considered as prospective for reconfigurable systems building. The purpose of this work consists in reducing the time consumptions contributing to a reconfigurable real-time system performance improvement. The research methods employed in this work are based on the set theory definitions, graphs, probability theory and mathematical statistics. Particularly, the graph theoretical approach to distribution supplemented with introduction of the system of the real-time reconfigurable computing system criteria, built on the wireless protocol, is taken as the technique basis. The research task consists in developing a technique for building a computing network based on the wireless protocol, ensuring data exchange between spatially separated processor modules, as well as an algorithm for building the computing network, which realizes the developed technique.

This article presents the developed technique and algorithm for building a computer network based on a wireless protocol. The developed technique novelty consists in introduction of the distance factor for more accurate selection of the preferred processor module for the wireless network. The developed technique and algorithm of a real-time computing system built on a wireless protocol allows ensuring the optimal tasks distribution organizing in a reconfigurable computing system. It appears possible to develop software for distributing computational tasks to processor modules in order to reduce the time spent on data transmission within the system based on the presented algorithm.

Keywords:

information transfer, computer network, task distribution, wireless network, processor module

References

  1. Borzov D.B., Chernyshev A.A. Vestnik nauchnykh konferentsii, 2020, no. 10-1(62), pp. 28-30.
  2. Andreev A.M., Mozharov G.P., Syuzev V.V. Mnogoprotsessornye vychislitel’nye sistemy: teoreticheskii analiz, matematicheskie modeli i primenenie (Multiprocessor computing systems: theoretical analysis, mathematical models and application), Moscow, MGTU im. N. E. Baumana, 2011, 332 p.
  3. Datsyuk V.N., Datsyuk O.V., Bukatov A.A., Vinogradova S.A. Rukovodstvo po programmirovaniyu vysokoproizvoditel’nykh vychislitel’nykh system (Guide to programming of high-performance computing systems), Rostov-on-Don, Yuzhnyi federal’nyi universitet, 2017. 208 p.
  4. Khisamutdinov R.A. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2006, no. 3, pp. 148-153.
  5. Rumyantsev A.S. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2012, no. 4, pp .79-83.
  6. Borzov D.B., Chernyshev A.A. Mashinostroenie i tekhnosfera XXI veka, 2021, no. 10-1(62), pp. 72-74.
  7. Gurevich O.S., Kessel’man O.G., Trofimov A.S., Chernyshov V.I. Trudy MAI, 2017, no. 94, URL: http://trudymai.ru/eng/published.php?ID=81143
  8. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57894
  9. Leonov A.V., Chaplyshkin V.A. Omskii nauchnyi vestnik, 2015, no. 3 (143), pp. 297 — 301.
  10. Borodin V.V., Petrakov A.M. Trudy MAI, 2015, no. 80. URL: http://trudymai.ru/eng/published.php?ID=57035
  11. Talaev A.V., Borodin V.V. Trudy MAI, 2018, no. 99. URL: http://http://trudymai.ru/eng/published.php?ID=91644
  12. Shevtsov V.A., Borodin V.V., Krylov M.A. Trudy MAI, 2016, no. 85. URL: http://trudymai.ru/eng/published.php?ID=66417
  13. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93398
  14. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2016, no. 87. URL: http://trudymai.ru/eng/published.php?ID=69735
  15. Mozaffari M., Saad W., Bennis M., Debbah M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage, IEEE Communications Letters, 2016, vol. 20, no. 8, pp. 1647-1650. DOI:10.1109/LCOMM.2016.2578312
  16. Qiu C., Wei Z., Feng Z., Zhang P. Joint resource allocation, placement and user association of multiple UAV — mounted base stations with in — band wireless backhaul, IEEE Wireless Communications Letters, 2019, vol. 8, no. 6, pp. 1575-1578. DOI:10.1109/LWC.2019.2928544
  17. Yin S., Zhao Y., Li L. Resource allocation and base station placement in cellular networks with wireless powered UAVs, IEEE International Conference on Communications (ICC), 2019, vol. 68, no. 1, pp. 1050-1055. DOI:10.1109/ICC.2019.8761872
  18. Zhan P., Yu K., Swindlehurst A.L. Wireless relay communications with unmanned aerial vehicles: performance and optimization, IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 3, pp. 2068 — 2085. DOI:10.1109/TAES.2011.5937283
  19. Zhao W., Ammar M., Zegura E. A message ferrying approach for data delivery on sparse mobile ad hoe networks, Proc. 5th ACM international symposium on Mobile ad hoc networking and computing, 2004, pp. 187-198. URL: https://doi.org/10.1145/989459.989483
  20. Zhan C., Zeng Y., Zhang R. Energy — efficient data collection in UAV enabled wireless sensor network, IEEE Wireless Communication Letters, 2018, vol. 7, no. 3, pp. 328 — 331. DOI:10.1109/LWC.2017.2776922


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход