A full-wave simulation of onboard earth surveillance radar electromagnetic fields for an emc ensuring


DOI: 10.34759/trd-2022-122-11

Аuthors

Kozlov K. V.1, Volkov A. P.2*, Starovoitov E. I.1**, Popov E. V.1

1. Radio Engineering Corporation “VEGA”, 34, Kutuzovskiy prospekt, Moscow, 121170, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: alexander.p.volkov@gmail.com
**e-mail: vega.su

Abstract

The use of onboard Earth surface surveying radar (including SAR) solves a number of tasks, which include the survey of the underlying surface, obtaining radar images of the terrain with a required resolution, detection of natural and artificial ground objects, operational mapping, etc. The installation of radar on board an aircraft is associated with the layout of various equipment in a confined space, taking into account the requirements of electromagnetic compatibility. Due to the fact that the strongest source of electromagnetic interference on board of aircraft is the radar, the assessment of its impact on the operation of the rest of the equipment is of paramount importance. The peculiarity of the UHF-band under consideration is that the wavelengths are comparable with the lengths of external and internal cable lines, as well as with the dimensions of the electronic equipment blocks. The paper presents the methodology of numerical modeling of the distribution of the electromagnetic field in the near zone, created by onboard radar of the UHF-band, designed for Earth surface surveying. For electrodynamic modeling of the electromagnetic field's distribution, the authors used a Finite Difference Time Domain Method. An assessment has been made of the electric field strength and current density induced on the electronic equipment block's housings located next to the active phased antenna array of the radar. These data can be used in works on electromagnetic compatibility of onboard electronic equipment. A description is presented of laboratory research schemes and the sequence of complex checks of equipment on the aircraft, associated major challenges. The authors separately considered problems arising during testing of satellite navigation equipment.

Keywords:

full-wave simulation, electromagnetic field, radar, aircraft, satellite navigation, electromagnetic compatibility

References

  1. Antipov V.N., Vikent'ev A.Yu., Koltyshev E.E. et al. Aviatsionnye sistemy radiovideniya (Aerial radiovision systems), Мoscow, Radiotekhnika, 2015, 648 p.

  2. Krokhalev D.I. Tekhnologii elektromagnitnoi sovmestimosti, 2019, no. 2 (69), pp. 56-72.

  3. Gainutdinov R.R., Chermoshentsev S.F. Tekhnologii elektromagnitnoi sovmestimosti, 2018, no. 2 (65), pp. 62-78.

  4. Taflove A., Hagness S.C. Computational electromagnetics: The finite-difference time-domain method, 3rd. ed. Norwood, MA, Artech House, 2005, 853 p.

  5. Volakis J.L., Chatterjee A., Kempel L.C. Finite element method for electromagnetic. New York, IEEE Press, 1998, 368 p.

  6. Grinev A.Yu. Chislennye metody resheniya prikladnykh zadach elektrodinamiki (Count methods of solution for applied electrodynamics), Moscow, Radiotekhnika, 2012, 336 p.

  7. Gribanov A.N., Il'in E.V., Zaikin A.E., Volkov A.P. Antenny, 2013, no. 4 (191), pp. 9-20.

  8. Yee K. S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions Antennas and Propagation, 1966, vol. 14, no 3, pp. 302-307. DOI:10.1109/TAP.1966.1138693

  9. Jensen M.A. Time-Domain Finite-Difference Methods in Electromagnetics: Application to Personal Communication. Ph.D. dissertation at University of California, Los Angeles, CA, 1994.

  10. Karpov O.A., Titov M.P., Tsvetkov O.E. II Vserossiiskie Armandovskie chteniya «Radiofizicheskie metody v distantsionnom zondirovanii sred». Murom – 2012: sbornik trudov. Murom, IPTs MI VlGU, 2012, pp. 532 – 537.

  11. Petrov Yu.V., Byzov A.N., Petrov N.Yu., Yukhno S.A. Vestnik VGU. Seriya: sistemnyi analiz i informatsionnye tekhnologii, 2015, no. 1, pp. 67-75.

  12. Chernov V.M. Nauchnaya sessiya GUAP: sbornik dokladov. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2016, vol. 1, pp. 223-225.

  13. Chernodarov A.V., Patrikeev A.P., Kovregin V.N., Kovregina G.M., Merkulova I.I. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2017, vol. 20, no. 1, pp. 222-231.

  14. Gus'kov Yu., Samarin O., Savost'yanov V. Radioelektronnye tekhnologii, 2016, no. 2, pp. 31-33.

  15. Dobychina E.M., Snastin M.V., Obukhov A.E., Kharalgin S.V. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75661

  16. Mekhtiev R.F., Savel'ev A.N., Solod A.G. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112869. DOI: 10.34759/trd-2020-110-13

  17. Dobychina E.M., Snastin M.V., Kharalgin S.V., Solod A.G., Malakhov R.Yu. SVCh-tekhnika i telekommunikatsionnye tekhnologii, 2020, no. 1-2, pp. 167-168.

  18. Akinshin I.V., Balyuk N.V., Bobrovnik O.L. et al. Tekhnologii elektromagnitnoi sovmestimosti, 2020, no. 2(73), pp. 13-21.

  19. Chernodarov A.V., Patrikeev A.P., Borzov A.B., Merkulova I.I. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2016, vol. 18, no. 4(7), pp. 1456-1464.

  20. Kornilov I.N. Testirovanie navigatsionnoi apparatury potrebitelya GPS/GLONASS (Testing of GPS/GLONASS consumer navigation equipment: educational and methodical manual), Ekaterinburg, Izd-vo Ural'skii federal'nyi universitet, 2016, 48 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход