The mathematical modelling methods for in-flight definition of the degradation of the gas turbine engine components performance


DOI: 10.34759/trd-2022-123-23

Аuthors

Ezrokhi Y. A.*, Kalenskii S. M.**

Central Institute of Aviation Motors named after P.I. Baranov, CIAM, 2, Aviamotornaya str., Moscow, 111116, Russia

*e-mail: yaezrokhi@ciam.ru
**e-mail: 30105@ciam.ru

Abstract

During the operation of the aviation gas turbine engine (GTE) its component technical state worsens continuously. It leads to degradation of the GTE main parameters, first of all, the engine trust and the specific fuel consumption.

Therefore the problem of the diagnostics of the gas turbine engine and its components during their operation is very actually, and its decision makes it possible to define authentically enough "critical" degree of deterioration of GTE components when their repair or replacement is necessary.

This problem is especially claimed, if there is a possibility to carry out engine components diagnostics not only during special separate ground tests, but in-flight operation in engine system.

The offered diagnostics way is based on an assumption that influence of efficiency change δηi of each taken separately turbojet components on its trust are independent among themselves and has linear character.

In this case it is possible to present the relative change of the engine trust δR as the sum of products of relative deviations δηi on the influence parameter Вi of the engine components efficiency on the trust change.  

The numerical indicators of deterioration of separate engine components efficiency received according to a presented method can be used for the analysis of the reasons of engine trust loss during its operation and for to work out losses indemnification methods.

Also these methods can be used for definition of the engine components state necessary at transition to modern strategy of management by a GTE resource - operation according to a state.

The example of definition of the change of engine components efficiency for a two shaft turbofan engine with the typical level of parameters corresponding to 4 generation is considered.

Keywords:

Mathematical model, the degradation of components performance, the gas turbine engine, experimental data, the influence parameter, the trust in-flight definition

References

  1. Akhmedzyanov A.M., Dubravskii N.G., Tunakov A.P. Diagnostika sostoyaniya VRD po termogazodinamicheskim parametram (Diagnostic of condition JTE on gas-dynamic properties), Moscow, Mashinostroenie, 1983, 206 p.

  2. Novikov A.S. Kontrol’ i diagnostika tekhnicheskogo sostoyaniya gazoturbinnykh dvigatelei (The control and diagnostics of a technical condition of gas-turbine engines), Moscow, Nauka, 2007, 468 p.

  3. Sirotin N.N. Konstruktsiya i ekspluatatsiya, povrezhdaemost’ i rabotosposobnost’ gazoturbinnykh dvigatelei (Osnovy konstruirovaniya aviatsionnykh dvigatelei i energeticheskikh ustanovok). Design and operation, damageability and functionability of gas-turbine engines. (The bases of designing of aero-engines and power installations), Moscow, RIA “IMINFORM”, 2002, 440 p.

  4. Cherkez A.Ya. Inzhenernye raschety gazoturbinnykh dvigatelei metodom malykh otklonenii (Engineering calculations of gas-turbine engines by a method of small deviations), Mashinostroenie, 1975, 380 p.

  5. Podkolzin V.G., Polunin I.M., Popov V.V., Kulakov A.D. Patent na izobretenie 2327961, 27.06.2008.

  6. Alexander I. Russel. Method & apparatus for real-time measurement of the net trust of a jet engine. EP 0342970 A2. European Patent Office. 1989. URL:https://patents.google.com/patent/EP0342970A2/zh

  7. Borovik V.O., Borshchanskii V.M., Zozulin V.A. Trudy TsIAM, no. 663, 1975, pp. 240-254.

  8. Ezrokhi Yu.A., Kizeev I.S., Khoreva E.A. Aerospace MAI Journal, 2017, vol. 24, no. 4, pp. 46-51.

  9. Tskhovrebov M.M., Ezrokhi Yu.A. Patent na izobretenie 2464437, 20.10.2012.

  10. Gol’berg F.D., Gurevich O.S., Petukhov A.A. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33278

  11. Gurevich O.S., Gol’berg F.D., Zuev S.A., Busurin V.I. Trudy MAI, 2017, no. 93. URL: http://trudymai.ru/eng/published.php?ID=80286

  12. Mattias Henriksson, Tomas Grönstedt, Claes Breitholtz. Model-based on-board turbofan thrust estimation, Control Engineering Practice, 2011, no. (19).6, pp. 602-610.

  13. URL:https://www.infona.pl/resource/bwmeta1.element.elsevier-f94cc7c6-ed69-3278-be80-9b1e228ba4a6

  14. Ezrokhi Yu.A., Kalenskii S.M. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164276. DOI: 10.34759/trd-2022-122-19

  15. Grigor’ev V.A., Kuznetsov S.P., Gishvarov A.S. Ispytaniya aviatsionnykh dvigatelei (Tests of aero-engines), Moscow, Mashinostroenie, 2009, 504 p.

  16. Vovk M.Yu., Kulalaev V.V. Trudy MAI, 2018, no. 101. URL: http://trudymai.ru/eng/published.php?ID=96932

  17. Adgamov R.I. et al. Obrabotka i analiz informatsii pri avtomatizirovannykh ispytaniyakh GTD. (Processing and the analysis of the information at the automated tests of a GTE), Moscow, Mashinostroenie, 1987, 216 p.

  18. Ezrokhi Yu.A. Modelirovanie dvigatelya i ego uzlov. Mashinostroenie: entsiklopediya. T. IV-21. Samolety i vertolety. Kn. 3. Aviatsionnye dvigateli (Modelling of the engine and its units. Airplanes and helicopters. Book 3. Aircraft engines), Moscow, Mashinostroenie, 2010, pp. 341-353.

  19. Chuyan R.K. Metody matematicheskogo modelirovaniya dvigatelei letatel’nykh apparatov (Methods of mathematical modelling of engines of flight vehicles), Moscow, Mashinostroenie, 1988, 288 p.

  20. Kuz’michev V.S., Krupenich I.N., Rybakov V.N. et al. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/eng/published.php?ID=41518

  21. Korn G.A., Korn T.M. Spravochnik po matematike (Mathematical handbook), Мoscow, Nauka, 1973. 832 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход