Requirements for on-board optical-electronic means of aerial reconnaissance of aircraft


DOI: 10.34759/trd-2022-123-16

Аuthors

Belskiy A. B.1, 2

1. ,
2. National Helicopter Center Mil & Kamov, 26/1, Garshina str., Tomilino, Moscow region, 140070, Russia

e-mail: abelskiy@mi-helicopter.ru

Abstract

The need for round-the-clock, all-weather and safe execution of combat and special missions by military aircraft, ensuring full situational awareness of the crew of the aircraft in the cockpit and the background situation under conditions of enemy information countermeasures impose increased requirements on airborne reconnaissance assets, namely on the functional characteristics of airborne monitoring, detection and recognition of targets, as well as determination of their coordinates and target designation

Airborne reconnaissance (monitoring) is carried out by special airborne technical means of reconnaissance of the aircraft, providing acquisition, registration, indication, processing and transfer of necessary data on objects and target environment.

Technical reconnaissance facilities include radar, radio-technical, and optoelectronic systems operating in various spectral wavelength ranges, independently or together in various combinations.

Optical-electronic systems are the most effective means for solving air reconnaissance tasks and obtaining information about the location and types of enemy objects due to their passive operation mode and high level of image resolution of targets (objects), including in complex background-target and operational-tactical environments.

The article discusses and analyzes the features of creating on-board optoelectronic systems to expand the capabilities of on-board optoelectronic systems for conducting aerial reconnaissance: building a system based on functionally-constructive unified subsystems and modules; multi-channel; using a hyperspectral channel for detecting, recognizing hidden, disguised objects; intellectualization of functioning; integration of individual subsystems and channels; automation of the processes of mutual alignment of channels, built-in monitoring and troubleshooting; automatic tracking of areal, point objects, with the allocation and further tracking of several targets; stabilization of the line of sight; interfacing with sensors for obtaining heterogeneous information; application of digital information processing methods; generation of output data from various sensors for processing and solving recognition problems; ensuring group interaction as part of the various control circuits.

Keywords:

optoelectronic systems, radar systems, image integration, information channels, processing algorithms

References

  1. Bel'skii A.B. Fotonika, 2013, no. 4, S. 66-74.

  2. Bel'skii A.B., Zhosan N.V., Grebenshchikov V.G. et al. Fotonika, 2013, no. 5, pp. 66-75.

  3. Bel'skii A.B. Fotonika, 2012, no. 6, pp. 26-31.

  4. Bel'skii A.B., Sakharov N.A. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk, 2019, no. 108, pp. 103-110.

  5. Bel'skii A.B., Sakharov N.A. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk, 2020, no. 2(112), pp. 52-58.

  6. Bel'skii A.B., Efremov E.E, Vagin A.Yu., Pal'chenko A.A., Sizov A.V. Vestnik nauchno-tekhnicheskogo soveta Voenno-promyshlennoi komissii Rossiiskoi Federatsii, 2021, no. 3, pp. 29-37.

  7. Sel'vesyuk N.I., Veselov Yu.G., Gaidenkov A.V., Ostrovskii A.S. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100782

  8. Shipko V.V. Trudy MAI, 2020, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112863. DOI: 10.34759/trd-2020-110-12

  9. Chernetskaya I.E., Spevakova S.V. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=119001. DOI: 10.34759/trd-2020-114-14

  10. Bel'skii A.B. et al. Patent 100341, 23.04.2010.

  11. Bel'skii A.B., Filippov S.P. Patent 81226, 14.06.2008.

  12. Yakushenkov Yu.G. Osnovy optiko-elektronnogo priborostroeniya (Fundamentals of optoelectronic instrumentation), Moscow, Logos, 2013, 376 p.

  13. Lazarev L.P. Optiko-elektronnye pribory navedeniya (Optical-electronic guidance devices), Moscow, Mashinostroenie, 1989, 512 p.

  14. Krasnov A.M. Aviatsionnye pritsel'no-navigatsionnye sistemy (Aviation sighting and navigation systems): textbook. Moscow, VVIA im. prof. N.E. Zhukovskogo, 2006, 623 p.

  15. Krasnov A.M. Osnovy analiza i sinteza aviatsionnykh pritsel'no-navigatsionnykh system (Fundamentals of analysis and synthesis of aviation sighting and navigation systems). Moscow, VVIA im. prof. N.E. Zhukovskogo, 2009, 318 p.

  16. Krasnov A.M., Moiseev A.G. Aviatsionnye pritsel'no-navigatsionnye sistemy. Integrirovannye interaktivnye aviatsionnye pritsel'nye sistemy (Aviation sighting and navigation systems. Integrated interactive aviation sighting systems). Part 1. Moscow, VVIA im. prof. N.E. Zhukovskogo, 2003, 360 p.

  17. Shirokorad A.B. Rossiiskaya aviatsiya v boyakh za Siriyu (Russian aviation in the battles for Syria), Moscow, Veche, 2016, 384 p.

  18. Nikolaev V.I., Bruk V.M. Sistemotekhnika. Metody i prilozheniya (System Engineering. Methods and applications), Leningrad, Mashinostroenie, 1985, 199 p.

  19. Kalabukhova E.P. Osnovy teorii effektivnosti vozdushnoi strel'by i bombometaniya (Fundamentals of the theory of the ef fectiveness of aerial shooting and bombing), Moscow, Mashinostroenie, 1991, 330 p.

  20. Ageev V.M., Pavlova N.V. Pribornye kompleksy letatel'nykh apparatov i ikh proektirovanie (Instrument complexes of aircraft and their design), Moscow, Mashinostroenie, 1990, 432 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход