Method for adaptive control of the longitudinal movement of a small-sized aircraft with a signal limitation of the integral component


DOI: 10.34759/trd-2022-124-18

Аuthors

Abadeev E. M.*, Piskunova O. I.*, Tretyakov A. V.*

Dubna State University, Dubna, Moscow region, Russia

*e-mail: ifi@uni-dubna.ru

Abstract

The article conducts the studies of characteristics of the promising control and longitudinal motion stabilization system of a dynamic object, such as a small-sized aircraft (SSA), based on the technique of the adaptive signal formation [1, 2].

The study of the control method being considered was conducted by the mathematical modeling method of an isolated pitch channel with implementation of the proposed SSA control laws at rather characteristic external impacts on it. Simulation was being performed under conditions of changes by the given “slow motions” law [3] of the flight parameters such as altitude and velocity.

Comparison of the control processes of the SSA with the system being proposed and control processes with the conventional proportional-differential control technique [4] adapted to the given situation in [5, 6, 7] was performed to evaluate the effectiveness of the newly introduced control specifics.

The relevance of the presented work consists in the fact that the velocity increase being achieved by the proposed technique, overshoot degree reduction and, correspondingly, increasing the control signals processing accuracy may contribute to the SSA maneuvering and controllability characteristics improvement.

Keywords:

adaptive control, angular stabilization system, small-sized aircraft, stability, controllability

References

  1. Abadeev E.M., Puchkov A.M. Patent RU2569580 C2. Byul. no. 33, 20.05.2015
  2. Abadeev E.M. Patent RU2647405 C1. Byul. no. 8, 15.03.2018
  3. Vostrikov A.S., Frantsuzova G.A. Teoriya avtomaticheskogo regulirovaniya (Theory of automatic regulation), Moscow, Yurait, 2019, 279 p.
  4. Pupkov K.A., Egupov N.D. Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya. T.3: Sintez regulyatorov sistem avtomaticheskogo upravleniya (Methods of classical and modern theory of automatic control. V.3. Synthesis of regulators of automatic control systems), Moscow, MGTU im. N.E. Baumana, 2004, 616 p.
  5. Tret’yakov A.V., Sinitsa S.P. VIII-ya Vserossiiskaya yubileinaya nauchno-tekhnicheskaya konferentsiya «Problemy sovershenstvovaniya robototekhnicheskikh i intellektual’nykh sistem letatel’nykh apparatov»: sbornik dokladov, Moscow, MAI-PRINT, 2010, pp. 146-150.
  6. Tret’yakov A.V., Sinitsa S.P. Trudy MAI, 2011, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25521
  7. Tret’yakov A.V. Vestnik komp’yuternykh i informatsionnykh tekhnologii, 2017, no. 3, pp. 16-24.
  8. Bodner V.A. Kozlov M.S. Stabilizatsiya letatel’nykh apparatov i avtopiloty (Aircraft stabilization and autopilots), Moscow, Oborongiz, 1961, 508 p.
  9. Kuzovkov N.T. Dinamika sistem avtomaticheskogo upravleniya (Dynamics of automatic control systems), Moscow, Mashinostroenie, 1968, 428 p.
  10. Kareva E.M., Puchkov A.M., Syrov A.S. VIII-ya Vserossiiskaya yubileinaya nauchno-tekhnicheskaya konferentsiya «Problemy sovershenstvovaniya robototekhnicheskikh i intellektual’nykh sistem letatel’nykh apparatov»: sbornik dokladov. Moscow, MAI-PRINT, 2010, pp. 334-339.
  11. Kornilov V.A., Molodyakov D.S., Sinyavskaya Yu.A. Trudy MAI, 2012, no. 62. URL: https://trudymai.ru/eng/published.php?ID=35543
  12. Aminova F.E. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115168. DOI: 10.34759/trd-2020-111-16
  13. Parafes’ S.G. Trudy MAI, 2011, no. 49. URL: https://trudymai.ru/eng/published.php?ID=28250
  14. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. et al. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie, 2011, 776 p.
  15. Bogoslovskii S.V., Dorofeev A.D. Dinamika poleta letatel’nykh apparatov (Flight dynamics of aircraft), Saint-Petersburg, SPbGUAP, 2002, 64 p.
  16. Ageev A.M., Sizykh V.N. Nauchnyi vestnik NGTU, 2014, vol. 56, no. 3, pp. 7-22.
  17. Balakin Yu.N., Lazarev V.L. Dinamika poleta samoleta. Raschet traektorii i letnykh kharakteristik (Dynamics of the aircraft flight. Calculation of trajectories and flight characteristics), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet im. S.P. Koroleva, 2002, 56 p.
  18. GOST 4401-81. Atmosfera standartnaya. Parametry (State standard 4401-81. Standard atmosphere. Parameters), Moscow, Standarty, 2003, 182 p.
  19. Puchkov A.M. Aerospace MAI Journal, 2009, vol. 16, no. 6, pp. 49-54.
  20. Rybnikov S.I., Nguen Tkhan’ Shon. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90450
  21. Khrustalev M.M., Khalina A.S. Trudy MAI, 2018, no. 102. URL: https://trudymai.ru/eng/published.php?ID=99065
  22. Mikeladze V.G. Aviatsiya obshchego naznacheniya rekomendatsii dlya konstruktorov (General aviation recommendations for designers), Zhukovskii, TsAGI, 1996, 300 p.
  23. Abadeev E.M., Lyapunov V.V. Dinamicheskoe proektirovanie sistem avtonomnogo upravleniya bespilotnymi letatel’nymi apparatami (Dynamic design of autonomous control systems for unmanned aerial vehicles), Dubna, Gosudarstvennyi universitet «Dubna», 2017, 265 p.
  24. Tret’yakov A.V. Svidetel’stvo gosudarstvennoi registratsii programmy dlya EVM RU2021666244. Byul. no. 10, 11.10.2021.
  25. Krushel’ E.G., Stepanchenko I.V. Informatsionnoe zapazdyvanie v tsifrovykh sistemakh upravleniya (Information delay in digital control systems), Volgograd, VolgGTU, 2004, 124 p.
  26. Pevzner L.D. Teoriya sistem upravleniya (Theory of control systems). Saint Petersburg, Lan’, 2021, 424 p.



Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход