In-flight calibration of the "DEKART" CubeSat magnetometer


DOI: 10.34759/trd-2022-124-19

Аuthors

Rozin P. E.1*, Simonov A. V.1**, Gordienko E. S.1***, Zaiko Y. K.2****

1. Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia
2. Skobeltsyn institute of nuclear physics Lomonosov Moscow state university, Moscow, Russia

*e-mail: rozinpe@yandex.ru
**e-mail: alex.simonov@laspace.ru
***e-mail: ges@laspace.ru
****e-mail: zaikoiurii@yandex.ru

Abstract

As part of the ADCS of CubeSat LEO satellites magnetic control systems have become the most widespread. The magnetic control system, as a rule, magnetorquers that create control momentum and magnetometers. Magnetometers are used in this system to determine the direction and magnitude of the Earth’s magnetic field intensity vector. To reduce the cost of creating a CubeSat spacecraft, it is common practice to use household digital magnetometers. These devices are characterized by low accuracy due to the lack of calibration of the zero offset and mutual orthogonality of the measurement axes of the device.

Thus, the task of developing an algorithm and software implementing it for calibration of magnetometers become very important.

The algorithm considered in the paper is based on the processing of measurements of a 3-axis magnetometer on Earth, after their transmission from the spacecraft. The processing consists in searching by the method of configurations minimum of the functional, as a result of which the values of the calibration parameters are determined. The value of the functional is determined as a result of numerical simulation of the spacecraft flight and determination of the calculated value of the Earth’s magnetic induction vector, followed by comparison with the transformed measured induction vector of the Earth’s field.

The practical application of the algorithm is considered on the example of the «DEKART» spacecraft launched as part of the UniverSat program on September 28, 2020 at 14:20 (Moscow time) from the Plesetsk cosmodrome. «DEKART» CubeSat spacecraft was developed and assembled at the D.V. Skobeltsyn Research Institute of Nuclear Physics of Moscow State University.

Keywords:

"DEKART" spacecraft, magnetometer calibration, magnetic control system, 3-axis magnetometer

References

  1. Akimov I.O. et al. Inzhenernyi zhurnal: nauka i innovatsii, 2018, no. 5 (77), pp. 8.
  2. Morskoi I.M., Simonov A.V., Lyaskovskaya V.I., Ezhov A.S. Vestnik «NPO im. S.A. Lavochkina», 2014, no. 1, pp. 10-15.
  3. Abrashkin V.I., Voronov K.E., Dorofeev A.S. et al. Kosmicheskie issledovaniya, 2019, vol. 57, no. 1, pp. 61-73. DOI 10.1134/S0023420619010011
  4. Zakharova E.M., Minashina I.K. Informatsionnye protsessy, 2014, vol. 14, no. 3, pp. 256–274.
  5. Shipilov S.A. Metody bezuslovnoi mnogomernoi optimizatsii (Unconditional multivariate optimization methods), Novokuznetsk, KemGU, 2000, 31 p.
  6. Malyshev V.V., Starkov A.V., Fedorov A.V. Trudy MAI, 2012, no. 57. URL: https://trudymai.ru/eng/published.php?ID=30798
  7. Milov A.E., Rozin P.E. Vestnik NPO im. SA Lavochkina, 2018, no. 4, pp. 44-53.
  8. Malyshev V.V., Piyavskii B.S., Piyavskii S.A. Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2010, no. 1, pp. 46-61.
  9. Matyushin M.M., Lutsenko Yu.S., Gershman K.E. Trudy MAI, 2016, no. 89. URL: https://trudymai.ru/eng/published.php?ID=72869
  10. Snegovskii G.P. Trudy Rostovskogo gosudarstvennogo universiteta putei soobshcheniya, 2014, no. 4, pp. 98-102.
  11. Torres S.K.Kh., Vorontsov V.A. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=97035
  12. Usovik I.V., Darnopykh V.V. Trudy MAI, 2013, no. 65. URL: https://trudymai.ru/eng/published.php?ID=35957
  13. Alken P. et al. International geomagnetic reference field: the thirteenth generation, Earth, Planets and Space, 2021, vol. 73, no. 1. URL: ttps://doi.org/10.1186/s40623-020-01288-x
  14. John L. Crassidis, Kok-Lam Lai, and Richard R. Harman. Real-Time Attitude-Independent Three-Axis Magnetometer Calibration, Journal of Guidance, Control, and Dynamics, 2005, vol. 28, no. 1, pp. 115-120. DOI:10.2514/1.6278
  15. Roberto Alonso, Malcolm D. Shuster. TWOSTEP: A Fast Robust Algorithm for Attitude-Independent Magnetometer Bias Determination, Journal of the Astronautical Sciences, 2002, vol. 50, no. 4, pp. 433-451. DOI:10.1007/BF03546247
  16. Fell F., Tanenbaum M. Preliminary comparisons of the WGS84 (EGM 96) geoid with national vertical datums, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295), 2001, vol. 1, pp. 571-574. DOI:10.1109/OCEANS.2001.968784
  17. Folkner W.M., Williams J.G., Boggs D.H. The planetary and lunar ephemeris DE 421, IPN progress report, 2009, vol. 42, no. 178. pp. 1-34.
  18. Springmann J.C., Cutler J.W. Attitude-independent magnetometer calibration with time-varying bias, Journal of Guidance, Control, and Dynamics, 2012, vol. 35, no. 4, pp. 1080-1088.
  19. Soken H.E., Sakai S. Attitude estimation and magnetometer calibration using reconfigurable TRIAD+ filtering approach, Aerospace Science and Technology, 2020, vol. 99, pp. 105754. DOI:10.1016/j.ast.2020.105754
  20. Cheng B.J. et al. High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite, Science China Technological Sciences, 2018, vol. 61, no. 5, pp. 659-668. DOI:10.1007/s11431-018-9247-6



Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход