Electrodynamic accelerator control system with calculation of motion parameters in real time


DOI: 10.34759/trd-2022-124-20

Аuthors

Piyakov A. V.*, Sukhachev K. I.**, Dorofeev A. S.***, Bandyaev V. A.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: piyakov@ssau.ru
**e-mail: kir.sukhachev@gmail.com
***e-mail: alexandrdorofeev.ikp@yandex.ru
****e-mail: bandyaev.va@ssau.ru

Abstract

The work relates to the field of accelerator technology and is devoted to improving the control system of an electrodynamic linear accelerator of dusty charged particles. The existing accelerator is used to simulate the factors of the space environment and makes it possible to study the effect of high-speed micron-sized particles on the elements of the surface of the spacecraft under conditions close to real. However, this accelerator has a complex control system that requires the operator to control a large number of parameters in real time and to constantly adjust during the experiment. The need to measure physical quantities and calculate particle parameters, as well as manual control, increase the error in the formation of accelerating pulses in the dynamic section, which leads to inefficient particle acceleration or the loss of most of them.

The article proposes a new method for controlling a dynamic accelerator, the basis of which is a method for determining the parameters of a particle, which makes it possible to refuse any measurements other than time-of-flight, made in an improved measuring section. The structure of the measurement section is presented in the article, while it is clear that minor changes are required in the already existing design of the accelerator. A control system has been developed that allows, according to data from time-of-flight sensors, to automatically control the dynamic section of the accelerator with high accuracy. This is achieved, among other things, by refusing to use memory banks with pre-calculated voltage switching times on the drift tubes. In the new control system, the calculation of the particle position and its instantaneous velocity occurs in real time, since the calculation of the particle's specific charge is no longer required. Knowing the position of the particle in the path allows timely switching of the voltage on the drift tubes while the particle is inside them.

The proposed method for determining the particle parameters and the control system have a calculation error associated with the discreteness of the measured time intervals. An analysis of the error and its influence on the acceleration process was carried out, from which it is clear that the system allows particles to be accelerated in a wide range of specific charges, and the maximum deviation of the particle coordinate when switching the voltage on the drift tubes does not cause it to leave the fieldless space of the drift tube. In addition, the system has a margin of accuracy, since the simulation was carried out for the existing accelerator design and an increase in the frequency of time-of-flight sensors and a computer is not required, although this is possible if necessary.

Thus, the proposed method for controlling a dynamic accelerator makes it possible to automate the process of conducting experiments and increase the efficiency of particle acceleration in an extended range of charges, masses, and initial velocities, and also makes it possible to increase the number of accelerating sections, thereby increasing the equivalent accelerating voltage of the system.

Keywords:

particle accelerator, electrodynamic accelerator, microparticles, control system, FPGA, IP-core, microcontrollers, real-time computation

References

  1. Novikov L.S., Voronov K.E., Semkin N.D. et al. Measurement of solid microparticle flux in geosynchronous orbit, In: ESA Symp. Proc. on Environment Modelling for Space-based Applications, ESTEC, Noordwijk, 18-20 September, 1996, pp. 343-348.
  2. Semkin N.D., Kalaev M.P., Telegin A.M. et al. Multilayer film structures under the influence of micrometeoroids and space debris, Applied Physics, 2012, vol. 2, pp. 104-115.
  3. Nazarenko A.I. Modelirovanie kosmicheskogo musora (Modeling of space debris), Moscow, IKI RAN, 2013, 216 p.
  4. Telegin A.M., Piyakov A.V. A study of the performance of an induction sensor for an accelerator of charged microparticles, Instruments and Experimental Techniques, 2017, vol. 60 (6), pp. 875-879. DOI: 10.1134/s0020441217060100
  5. Kovalev R.V., Lunev V.V., Minyushkin D.N. Kosmonavtika i raketostroenie, 2000, no. 18, pp. 119-126.
  6. Novikov L.S. Vozdeistvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty (The impact of solid particles of natural and artificial origin on spacecraft), Moscow, Universitetskaya kniga, 2009, 104 p.
  7. Vorob’ev A.A., Zykova T.S., Spitsyn D.D. et al. Voprosy elektromekhaniki. Trudy VNIIEM, 2011, vol. 120, no. 1, pp. 27-30.
  8. Thomas E., Simolka J., DeLuca M. et al. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator, Review of Scientific Instruments, 2017, pp. 1-12. DOI: 10.1063/1.4977832
  9. Slattery J.C., Becker D.G., Hamermesh B., Roy N.L. A Linear Accelerator for Simulated Micrometeors, Review of Scientific Instruments, 1973, vol. 44, pp. 755-762.
  10. Semkin N.D., Piyakov A.V., Voronov K.E., Pomel’nikov R.A. Patent RU 2205525 S2. Byul. no. 15, 27.05.2003.
  11. Wang Z., Wurden G.A. Hypervelocity dust beam injection for national spherical torus experiment, Review of Scientific Instruments, 2004, vol. 75, pp. 3436–3438.
  12. Semkin N.D., Piyakov A.V., Voronov K.E. et al. A linear accelerator for simulating micrometeorites, Instruments and Experimental Techniques, 2007, vol. 50 (2), pp. 275-281.
  13. Semkin N.D., Voronov K.E., Piyakov A.V. et al. Simulation of micrometeorites using an electrodynamical accelerator, Instruments and Experimental Techniques, 2009, vol. 52 (4), pp. 595-601. DOI: 10.1134/S0020441207020194
  14. Tomas E., Simolka J., DeLuca M. et al. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator, Review of Scientific Instruments, 2017, DOI: 10.1063/1.4977832
  15. Pozwolski A. A compact laser-driven accelerator of macroparticles, Laser and Particle Beams, 2000, vol. 19, pp. 249-252.
  16. A. Shu, Collette A. et al. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies, Review of Scientific Instruments, 2012. DOI: 10.1063/1.4732820
  17. Piyakov A.V., Rodin D.V. et al. Numerical simulation of motion of dust particles in an accelerator path, CEUR Workshop Proceedings, 2017, vol. 1902, pp. 55-61. DOI:10.18287/1613-0073-2017-1902-55-61
  18. Slattery J.C., Becker D.G. et al. A linear accelerator for simulated micrometeors, Review of Scientific Instruments, 1973, vol. 44, pp. 755-762. DOI: 10.1063/1.1686238
  19. Piyakov A.V., Rodin D.V. et al. IV mezhdunarodnaya konferentsiya i molodezhnaya shkola «Informatsionnye tekhnologii i nanotekhnologii» (ITNT-2018), sbornik trudov. Samara, Novaya tekhnika, 2018, pp. 1987-1995.
  20. Romanov A.M. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng/published.php?ID=116374. DOI: 10.34759/trd-2020-112-14.
  21. Matafonov D.E. Trudy MAI, 2018, no 103. URL: https://trudymai.ru/eng/published.php?ID=100780
  22. Konstantinov A.A. Trudy MAI, 2014, no. 77. URL: https://trudymai.ru/eng/published.php?ID=53190
  23. Voronov K.E. Sukhachev K.I., Vorob’ev D.S. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2021, vol. 8, no. 1, pp. 24–38.



Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход