Flow in a cylindrical channel of a nonlinear viscoplastic fluid


DOI: 10.34759/trd-2022-125-09

Аuthors

Kolodezhnov V. N.*, Veretennikov A. S.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: bars4558@mail.ru
**e-mail: vas3141@gmail.com

Abstract

A combined rheological model has been proposed for viscoplastic working media that exhibit a non-monotonic dependence of viscosity on shear rate. This model assumes three typical behaviors in three adjacent ranges of shear rate variation. In the first range, the dependence of the shear stress on the shear rate is described by a linear function and characterized by a constant viscosity value. In the second and third shear rate ranges, this dependence is approximated by nonlinear functions describing dilatant and pseudoplastic behavior. On the basis of such a model, the solution to the steady flow of fluid in a cylindrical channel has been obtained. It is shown that three different flow patterns can be implemented depending on the level of pressure drop along the channel length. For each of the schemes inside the channel, characteristic zones of flow should be identified. In the case of the most complex third flow pattern inside the channel, four zones with different mechanical behavior of the fluid should be distinguished. In such a situation, the zone of plastic flow is formed in the central part of the channel in the vicinity of its fore-and-aft axis of symmetry. The next zone is characterized by shear flow with a constant viscosity value. Two more zones of nonlinear-viscous flow, in which the fluid exhibits dilatant and pseudoplastic behavior, are formed in the vicinity of the channel wall. Expressions for determining the boundaries of flow zones, and expressions for calculating the liquid velocity profile and the dependence of the volume flow on the pressure drop were obtained. The influence of the main parameters of the system under consideration on the velocity distribution characteristics and the dependence of the volumetric flow rate on the pressure drop over the channel length has been analyzed.

Keywords:

rheological model, viscoplastic fluid, shear rate, shear stress, viscosity

References

  1. Ageev R.V., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2014, no. 78. URL: https://trudymai.ru/eng/published.php?ID=53466
  2. Vinnikov V.V., Reviznikov D.L. Trudy MAI, 2004, no. 17. URL: https://trudymai.ru/eng/published.php?ID=34203
  3. Astarita Dzh., Marruchchi Dzh. Osnovy gidromekhaniki nen’yutonovskikh zhidkostei (Principles of non-Newtonian Fluid Mechanics), Moscow, Mir, 1978, 311 p.
  4. Litvinov V.G. Dvizhenie nelineino vyazkoi zhidkosti (Motion of nonlinear viscous fluid), Moscow, Nauka, 1982, 376 p.
  5. Vinogradov G.V., Malkin A.Ya. Reologiya polimerov (Polymer Rheology), Moscow, Khimiya, 1977, 439 p.
  6. Lebedev R.V., Lifshits S.A. Trudy MAI, 2011, no. 44. URL: https://trudymai.ru/eng/published.php?ID=25016
  7. Lebedev R.V., Lifshits S.A. Trudy MAI, 2011, no. 46. URL: https://trudymai.ru/eng/published.php?ID=26013
  8. Wetzel E.D., Lee Y.S., Egres R.G., Kirkwood K.M., Kirkwood J.E., Wagner N.J. The Effect of Rheological Parameters on the Ballistic Propeties of Shear Thickening Fluid (STF) — Kevlar Composites, AIP Conference Proceedings, 2004, vol. 712, pp. 288-293. DOI: 10.1063/1.1766538
  9. Egres R.G., Wagner N.J. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition, Journal of Rheology, 2005, vol. 49 (3), pp. 719-746. DOI: 10.1122/1.1895800
  10. Bischoff White E.E., Chellamuthu M., Rothstein J.P. Extensional rheology of shear-thickening cornstarch and water suspension, Rheologica Acta, 2010, vol. 49(2), pp. 119-129. DOI: 10.1007/s00397-009-0415-3
  11. Biao Yang, Sheng Wang, Guo Zhi Xu, Fei Xin Preparation of SiO2/PEG Shear Thickening System by Centrifugal Dispersion, Advanced Materials Research, 2012, vol. 560-561, pp. 586 — 590. DOI: 10.4028/www.scientific.net/AMR.560-561.586
  12. Brown E., Jaeger H.M. The role of dilation and confining stress in shear thickening of dense suspensions, Journal of Rheology, 2012, vol. 56, pp. 875-923. DOI: 10.48550/arXiv.1010.4921
  13. Singh A., Mari R., Denn M.M., Morris J.F. A constitutive model for simple shear of dens frictional suspensions, Journal of Rheology, 2018, vol. 62, pp. 457-468. DOI: 10.1122/1.4999237
  14. Duan Y., Keefe M., Bogetti T., Cheeseman B. Modeling friction effects on the ballistic impact behavior of a single-ply high-strength, International Journal of Impact Engineering, 2005, vol. 31(8), pp. 996-1012. DOI: 10.1016/j.ijimpeng.2004.06.008
  15. Kalman D.P., Schein J.B., Hougton J.M., Laufer C.H.N., Wetzel E.D., Wagner N.J. Polimer dispersion based shear thickening fluid-fabrics for protective applications, Proceedings of SAMPE, (Baltimore, MD), 2007, pp. 1-9.
  16. Hasanzadeh M., Mottaghitalab V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor, Journal of Materials Engineering and Performance, 2014, vol. 23 (4), pp. 1182-1196. DOI: 10.1007/s11665-014-0870-6
  17. Nilakantan G., Merrill R.L., Keefe M., Gillespie Jr. E.D., Wetzel E.D. Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of Kevlar fabrics, Composites Part B: Engineering, 2015, vol. 68, pp. 215-229. DOI: 10.1016/j.compositesb.2014.08.033
  18. Khodadadi A., Liaghat Gh., Vahid S., Sabet A.R., Hadavinia H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid, Composites Part B: Engineering, 2019, vol. 162, pp. 643-652. DOI: 10.1016/j.compositesb.2018.12.121
  19. Ting-Ting Li, Wenna Dai, Liwei Wu, Hao-Kai Peng, Xiayun Zhang, Bing-Chiuan Shiu, Jia-Horng Lin, Ching-Wen Low. Effects of STF and Fiber Characteristics on Quasi-Static Stab Resistant Properties of Shear Thickening Fluid (STF)-Impregnated UHMWPE/Kevlar Composite Fabrics, Fibers and Polymers, 2019, vol. 20(2), pp. 328-336. DOI: 10.1007/s12221-019-8446-6
  20. Anistratenko V.A., Koshevaya V.N., Valovoi B.N. Izvestiya vuzov. Pishchevaya tekhnologiya, 1992, no. 1, pp. 54-57.
  21. Galindo-Rosales F.J., Rubio-Hernandez F.J. Numerical simulation in steady flow of non-Newtonian fluids in pipes with circular cross-section, Numerical Simulations — Examples and Applications in Computational Fluid Dynamics, 2010, pp. 3-23. DOI: 10.5772/12900
  22. Galindo-Rosales F.J., Rubio-Hernandez F.J. Sevilla A. An apparent viscosity function for shear thickening fluids, Journal of Non-Newtonian Fluid Mechanics, 2011, vol. 166(5), pp. 321-325. DOI: 10.1016/j.jnnfm.2011.01.001
  23. Kolodezhnov V.N. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2014, no. 3, pp. 3-14.
  24. Vázquez-Quesada A., Wagner N. J., Ellero M. Planar channel flow of a discontinuous shear-thickening model fluid: Theory and simulation, Physics of Fluids, 2017, vol. 29(10), pp. 103-104. DOI: 10.1063/1.4997053
  25. Skul’skii O.I. Vychislitel’naya mekhanika sploshnykh sred, 2020, vol. 13, no. 3, pp. 269-278. DOI: 10.7242/1999-6691/2020.13.3.21
  26. Kolodezhnov V.N., Veretennikov A.S. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i Tekhnologii, 2020, no. 3, pp. 32-44.
  27. Kolodezhnov V.N., Veretennikov A.S. Sovremennye naukoemkie tekhnologii, 2021, no. 10, pp. 53-58. DOI: 10.17513/snt.38854
  28. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow, Drofa, 2003, 840 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход