Methodological approach to the development of a decision support system for the operator of an automated process control system based on dynamic bayesian networks


DOI: 10.34759/trd-2022-125-23

Аuthors

Dorozhko I. V.*, Gorokhov G. M.**, Kirillov I. A.**

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: Doroghko-Igor@yandex.ru
**e-mail: vka@mil.ru

Abstract

The article describes a scientific and methodological approach that can be used in the development of intelligent decision support systems for operators of automated process control systems.

The proposed approach is based on the mathematical apparatus of dynamic Bayesian networks, as well as the basic concepts and relations of the theory of reliability and technical diagnostics of systems. The initial data are information about the algorithm of the system functioning and the course of the technological process, information about the reliability (structural and logical circuits, failure rates of elements) of technological equipment, as well as diagnostic models linking the types of technical conditions and diagnostic signs. It is proposed to use temporal connections (temporal logical-probabilistic dependencies) in a dynamic Bayesian network to simulate changes in the technical states of elements of technological equipment and describe the dynamics of the technological process. A posteriori conclusion allows combining heterogeneous initial information and incoming new data to obtain a comprehensive assessment of the progress of the technological process and the condition of technological equipment in order for the operator to make an informed decision on the continuation or suspension of the technological process, search for the causes of abnormal situations and the choice of proactive measures.

The implementation of this approach is given on the example of a decision support system for an operator of an automated control system for technological equipment of a booster refueling system, the peculiarity of which, when analyzing reliability, is the need to take into account elements with three incompatible states — operable, failure of the «break» type and failure of the «closure» type, affecting the course of the technological process in different ways. The variants of using the developed decision support system for the current control of the technological process, forecasting and retrospective analysis in the search for the causes of abnormal situations are shown.

Keywords:

decision support system, Bayesian network, automated control system, a posteriori inference

References

  1. Belozerov V.A. et al. Avtomatizatsiya tekhnologicheskikh protsessov i proizvodstv. (Automation of technological processes and productions), Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2014, 284 p.
  2. Kustov M.A. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29172
  3. Bykov A.P., Piganov M.N. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115124. DOI: 10.34759/trd-2020-111-7
  4. Chikurov V.A., Aleinik V.V., Spichkina D.R. Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2018, vol. 10, no. 3, pp. 21-29.
  5. Perfil’ev A.S., Pirogov S.Yu., Semenov E.N. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2018, no. 665, pp. 223-230.
  6. Kopeika A.L. Kokhanovskii A.G., Tarasov A.G. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2019, no. 669, pp. 266-273.
  7. Golomazov A.V., Smirnov N.Ya., Iosifov P.A. Trudy MAI, 2019, no. 107. URL: https://trudymai.ru/eng/published.php?ID=107900
  8. Bobronnikov V.T., Tereshchenko T.S. Trudy MAI, 2016, no. 88. URL: https://trudymai.ru/eng/published.php?ID=70715
  9. Borisov V.E., Borsoeva V.V., Stepanov S.M., Stepnova A.I. Nauchnyi vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoi aviatsii, 2018, vol. 21, no. 3, pp. 47-55.
  10. Vtyurin V.A. Komp’yuternye tekhnologii v oblasti avtomatizatsii i upravleniya (Computer technologies in the field of automation and control), Saint Petersburg, SPbGLTU, 2011, 103 p.
  11. Dorozhko I.V., Zakharova E.A., Osipov N.A. Trudy Voenno-kosmicheskoi akademii im. A.F.Mozhaiskogo, 2019, no. 669, pp. 216-223.
  12. Dorozhko I.V., Ivanov O.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158259. DOI: 10.34759/trd-2021-118-19
  13. Dorozhko I.V., Osipov N.A., Ivanov O.A. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118181. DOI: 10.34759/trd-2020-113-14
  14. Sukar L.E. Veroyatnostnye grafovye modeli. Printsipy i prilozheniya (Probabilistic Graphical Models. Principles and Applications), Moscow, DMK Press, 2021, 338 p.
  15. Tulup’ev A.L., Nikolenko S.I., Sirotkin A.V. Osnovy teorii baiesovskikh setei (The basics of the theory of Bayesian networks), Saint-Petersburg, Izd-vo Sankt-Peterburgskogo universiteta, 2019, 399 p.
  16. Cowell R.G., Dawid A.P., Lauritzen S.L., Spiegelhalter D.J. Probabilistic Networks and Expert Systems, Springer-Verlag, 1999.17. Jensen F.V. Bayesian Networks and Decision Graphs, New York, Springer-Verlag, 2001.
  17. Pearl J. Probabilistic Reasoning in Intelligent Systems, Networks of Plausible Inference, New York, Morgan Kaufman Publ., 1991.
  18. Tarasov A.G., Kokhanovskii A.G. Avtomatizatsiya tekhnologicheskikh protsessov i proizvodstv (Automation of technological processes and production: a workshop), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2020, 95 p.
  19. GeNIe & SMILE. Decisions systems laboratory. School of Information Sciences. University of Pittsburg. URL: http://genie.sis.pitt.edu/
  20. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti (Fundamentals of reliability theory), Saint Petersburg, BKhV-Peterburg, 2006, 702 p.
  21. Ryabinin I.A. Nadezhnost’ i bezopasnost’ strukturno-slozhnykh system (Reliability and safety of structurally complex systems), Saint Petersburg, Politekhnika, 2000, 248 p.
  22. Dmitriev A.K. Modeli i metody analiza tekhnicheskogo sostoyaniya bortovykh system (Models and methods of analysis of the technical condition of on-board systems: training manual), Saint Petersburg, VIKU imeni A.F. Mozhaiskogo, 1999, 171 p.
  23. Dmitriev A.K. Kopkin E.V. Izvestiya vuzov. Priborostroenie, 1999, vol. 42, no. 9, pp. 3-10.
  24. Dmitriev A.K, Yusupov R.M. Identifikatsiya i tekhnicheskaya diagnostika (Identification and technical diagnostics: a textbook for universities), Leningrad, MO SSSR, 1987, 521 p.
  25. Kopkin E.V., Kravtsov A.N., Myshko V.V. Analiz tekhnicheskogo sostoyaniya kosmicheskikh sredstv (Analysis of the technical condition of space assets), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2016, 189 p.
  26. Kopkin E.V., Kravtsov A.N., Myshko V.V. Kontrol’ i diagnostika kosmicheskikh sredstv (Control and diagnosis of space tools: a training manual), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2016, 198 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход