A model for evaluating the control efficiency of multi-satellite orbital systems


DOI: 10.34759/trd-2022-125-24

Аuthors

Minakov E. P.*, Privalov A. E.*, Bugaichenko P. Y.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The article is devoted to solving the important problem of evaluating the control efficiency of multi-satellite orbital systems. The article introduces definitions of an orbital system (OS), a multi-satellite OS (MS), and an control system of OS. The relevance of the problem of evaluating the control efficiency of MS by stochastic modeling is substantiated. Based on the principle of A.N.Kolmogorov, the MS control efficiency indicator has been identified and its mathematical model has been developed. The mathematical formulation of the problem of evaluating the control efficiency of MS, which consists in determining the efficiency coefficient of management, expressing the degree of achieving optimal efficiency at the current values of the controlled parameters, is realised. A model for evaluating the efficiency of MS management in the form of a continuous Markov chain has been developed. With the application of the developed model, the evaluation of the control efficiency of a perspective MS of remote sensing the Earth based on the Berkut spacecrafts, which is being developed within the framework of the Sphere program, has been carried out. The dependences of the control efficiency on the quality indicators of the control system for solving various remote sensing tasks has been obtained. The developed model can be used at the stage of development of methods, techniques and algorithms of MS control for their elaboration, verification, calibration, optimization, evaluation of the impact of their quality indicators on the control efficiency of MS, and also for justification of requirements for them and confirmation of compliance with the declared requirements.

Keywords:

multi-satellite orbital systems, control system, Markov model, control efficiency

References

  1. Potyupkin A.Yu., Panteleimonov I.N., Timofeev Yu.A., Volkov S.A. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2020, vol. 7, no. 3, pp. 61–70. DOI: 10.30894/issn2409-0239.2020.7.3.61.70
  2. GOST R 53802–2010. Sistemy i kompleksy kosmicheskie. Terminy i opredeleniya (Space systems and complexes. Terms and definitions, State Standart R 53802–2010), Moscow, Standartinform, 2019. 34 p.
  3. Petukhov G.B., Yakunin V.I. Metodologicheskie osnovy vneshnego proektirovaniya tselenapravlennykh protsessov i tseleustremlennykh sistem (Methodological Foundations of External Design of Purposeful Processes and Purposeful Systems), Moscow, AST, 2006, 504 p.
  4. Gal'kevich A.I., Potyupkin A.Yu. Kosmonavtika i raketostroenie, 2011, no. 4 (65), pp. 159–164.
  5. Minakov E.P., Shafigullin I.Sh., Zubachev A.M. Metody issledovaniya effektivnosti primeneniya organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (Methods of studying the effectiveness of the use of organizational and technical systems for space purposes), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2016, 244 p.
  6. Minakov E.P., Volozhinskii A.O., Aleksandrov M.A. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2020, no. 7, pp. 129-135.
  7. Kolpin M.A., Protsenko P.A., Slashchev A.V. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=77144
  8. Minakov E.P., Bugaichenko P.Yu. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2014, no. 645, pp. 167–170.
  9. Sovetov B.Ya., Yakovlev S.A. Modelirovanie system (Modeling of systems), Moscow, Izd-vo Yurait, 2012, 343 p.
  10. Dorozhko I.V., Kopeika A.L., Osipov N.A. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2019, no. 671, pp. 303–313.
  11. Anan'ev A.V., Ivannikov K.S. Trudy MAI, 2022, no. 122. URL: http://trudymai.ru/eng/published.php?ID=164268. DOI: 10.34759/trd-2022-122-16
  12. Kremer N.Sh. Teoriya veroyatnostei i matematicheskaya statistika (Theory of robability and mathematical statistics), Moscow, Izd-vo Yuniti-Dana, 2004, 573 p.
  13. Afanas'ev I. Russkii kosmos, 2020, no. 8, pp. 8–19. URL: https://www.roscosmos.ru/media/pdf/russianspace/rk2020-08-single.pdf
  14. Issledovanie putei povysheniya effektivnosti promyshlennogo i innovatsionnogo sotrudnichestva gosudarstv-chlenov evraziiskogo ekonomicheskogo soyuza v sfere sozdaniya i ispol'zovaniya kosmicheskikh i geoinformatsionnykh tekhnologii, prodvizheniya kosmicheskikh produktov i uslug na mirovoi rynok. URL: http://www.eurasiancommission.org/ru/NIR/Lists/List/Attachments/312
  15. Protsenko P.A., Khubbiev R.V. Trudy MAI. 2021, no. 119. URL: http://trudymai.ru/eng/published.php?ID=159796. DOI: 10.34759/trd-2021-119-18
  16. Sputnikovoe distantsionnoe zondirovanie morskikh razlivov nefti. 2016. URL: https://www.ospri.online/site/assets/files/1130/satellite_remote_sensing_ru.pdf
  17. Karsaev O.V. Izvestiya YuFU. Tekhnicheskie nauki, 2019, no. 1 (203), pp. 129-143.
  18. DOI: 10.23683/2311-3103-2019-1-129-143
  19. Sologub A.V., Skobelev P.O., Simonova E.V., Tsarev A.V., Stepanov M.E., Zhilyaev A.A. Informatsionno-upravlyayushchie sistemy, 2013, no. 1 (62), pp. 16-26.
  20. Kalabin P.V. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2020, no. 675, pp. 266-275.
  21. Romashkin V.V., Loshkarev P.A., Fedotkin D.I., Tokhiyan O.O., Aref'eva T.A., Musienko V.A. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, vol. 16, no. 3, pp. 220-227. DOI 10.21046/2070-7401-2019-16-3-220-227

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход