A method for estimating the resolution of a space radar with a synthesized antenna aperture, taking into account the compensation of atmospheric distortions


DOI: 10.34759/trd-2022-126-15

Аuthors

Khazov A. S., Ortikov M. Y.*, Gusev S. N.**

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru
**e-mail: vka@mail.ru

Abstract

The article proposes the methodical approach allowing to solve a problem of improvement of quality of the radar images received by space synthetic aperture radar radars from the antenna synthesized by an aperture due to accounting of atmospheric distortions.

The purpose of work is improvement of approaches to formation of radar images.

Object of research are methods of estimation of resolution of the s space synthetic aperture radar which is used as the key information indicator and characterizes detail and quality of radar images.

The result of the work is a the technique of estimation of resolution of the space synthetic aperture radar taking into account compensation of atmospheric distortions.

The proposed technique is based on the use of compensation of atmospheric distortions from positions of geometrical optics. The offered technique of estimation of resolution of the space synthetic aperture radar allows to determine the amendment to inclined range taking into account the joint impact of distortions of the troposphere and an ionosphere at a stage of formation of basic function by an azimuth in synthesis algorithms of radar images.

Accounting of a refraction of electromagnetic waves and correction of inclined range are realized with use of index of refraction of the environment and a method of approach of geometrical optics at distribution of radio waves in the non-uniform environment. For use of this approach it is necessary to define a condition of the atmosphere with use of models of the troposphere and an ionosphere in a zone of the review of the synthetic aperture radar taking into account real geophysical conditions.

Results of imitating modeling confirm a possibility of use of the proposed technique for estimation and accounting of the errors brought by the atmosphere of Earth in measurements of radar parameters by means of methods of calculation of trajectories of radio waves at the set index of refraction of the environment.

The developed technique allows to carry out compensation of impact of atmospheric distortions and to increase quality of the received radar image.

The proposed methodical approach can be used for performing synthesis of radar images, for elimination of errors of measurement of coordinates of objects and for improvement of values of resolution and contrast of radar images.

Keywords:

remote sensing of the Earth, radar with synthesized antenna aperture, atmospheric distortion, radar image

References

  1. Kondratenkov G.S., Frolov A.Yu. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli (Radio vision. Radar systems of remote sensing of the Earth), Moscow, Radiotekhnika, 2005, 368 p.
  2. Verba V.S., Neronskii L.B, Osipov B.G., Turuk V.E. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya (Radar systems of space-based earth survey), Moscow, Radiotekhnika, 2010, 675 p.
  3. Gruzdov V.V., Kolkovskii Yu.V., Krishtopov A.V., Kudrya A.I. Novye tekhnologii distantsionnogo zondirovaniya Zemli iz kosmosa (New technologies of remote sensing of the Earth from space), Moscow, Tekhnosfera, 2019, 482 p.
  4. Fomin A.N., Tyapkin V.N., Dmitriev D.D. Teoreticheskie i fizicheskie osnovy radiolokatsii i spetsial’nogo monitoring (Theoretical and physical foundations of radar and special monitoring), Krasnoyarsk, Sibirskii federal’nyi universitet, 2016, 292 p.
  5. Ivanov V.F., Myslivtsev T.O., Tkachev E.A., Troitskii B.V. Ionosfernoe obespechenie sredstv lokatsii, navigatsii i svyazi (Ionospheric provision of means of location, navigation and communication), Saint Petersburg, Voenno-kosmicheskaya akademiya imeni A.F.Mozhaiskogo, 2011, 235 p.
  6. Khazov A.S., Ortikov M.Yu. Infokommunikatsionnye tekhnologii, 2020, vol. 18, no. 4, pp. 465-473.
  7. Korostylev V.I. Alekseev M.Yu. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika, 2010, no. 2, pp. 252-260.
  8. Goryachkin O.V. Elektromagnitnye volny i elektronnye sistemy, 2004, vol. 9, no. 6, pp. 38-45.
  9. Goryachkin O.V., Zhengurov B.G., Maslov I.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2016, vol. 15, no. 1, pp. 38-45.
  10. Thompson M.C., Janes H.B., Kirkpatric A.W. An analysis of time variation in tropospheric refractive index and apparentradio path length, Journal of Geophysical Research, 1960, vol. 65, no. 1, pp. 193-201.
  11. Troitskii B.V. Otklik signala radiozondirovaniya na ionosfernye neodnorodnosti (Response of the radiosonding signal to ionospheric inhomogeneities), Alma-Ata, Nauka, 1983, 163 p.
  12. Kiselev O.N. Mezomasshtabnye neodnorodnosti koeffitsienta prelomleniya v troposfere i ikh vliyanie na rasprostranenie radiovoln UKV-diapazona (Mesoscale inhomogeneities of the refractive index in the troposphere and their influence on the propagation of VHF radio waves), Tomsk, TUSUR, 2007, 199 p.
  13. Gulyaeva T.L., Huang X, Reinich B.Wetica. The ionosphere-plasmasphere model software for ISO, Acta Geodaetica et Geophysica Hungarica, 2002, vol. 37, no. 3, pp. 143-152. DOI:10.1556/AGeod.37.2002.2-3.3
  14. Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellite, in Proceedings Int., Sympos. on the Use of Artificial Satellite, Washington, DC, 1972, pp. 247-251. URL: https://doi.org/10.1029/GM015p0247
  15. Kalinkevich A.A., Kutuza B.G., Manakov V.Yu., Masyuk V.M., Plyushchev V.A. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskog, 2020, no. 674, pp. 39-43.
  16. Gavrilov K.Yu., Kamenskii K.V., Malyutina O.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158252. DOI: 10.34759/trd-2021-118-12
  17. Zanin K.A. Trudy MAI, 2017, no. 96. URL: https://trudymai.ru/eng/published.php?ID=85931.
  18. Kretov N.V., Ryzhkina T.E., Fedorova L.V. Radiotekhnika i elektronika, 1992, no. 1, pp. 90-95.
  19. Gusev S.N., Ortikov M.Yu., Khazov A.S. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2021, no. 680, pp. 224-230.
  20. Goryachkin O.V. Komp’yuternaya optika, 2002, no. 24, pp. 177-183.
  21. Kir’yanova K.S., Kryukovskii A.S. Vestnik Rossiiskogo novogo universiteta. Seriya: Matematicheskoe modelirovanie fizicheskikh, khimicheskikh i biologicheskikh protsessov, 2012, no. 3, pp. 27-33.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход