CAD/CAM/CAE system for manufacturing structures from fibrous composite materials using 3D-printing


DOI: 10.34759/trd-2022-126-21

Аuthors

Deniskina G. Y.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: dega17@yandex.ru

Abstract

The problem of development and implementation of a CAD/CAM/CAE system for manufacturing structures from fibrous composite materials using 3D printing is considered. The general configuration of the system and the assignment of its functional modules are described. The advantages of the mathematical support and software developed for the system for creating digital twins, which allow generating control programs and conducting virtual modeling of a 3D printing process to be used in the manufacture of products of complex geometric shapes, as well as developing rational schemes for the reinforcement of printed composite structures and finding optimal printing modes, are shown.

CAD/CAE system is focused on modeling, visualization of the placement of fibers in the printing area, finding the optimal printing scheme based on the requirements conditioned by the product operating conditions. In this connection, it must meet the following requirements:

  • availability of the option to uniformly describe flat print areas,
  • availability of tools for setting various printing schemes,
  • availability of tools for calculating the strength of a structure in compliance with a certain printing scheme,
  • availability of tools for selecting the optimal printing scheme conditioned by the product operating conditions from various printing schemes.

The main principles of development of a CAD/CAM/CAE system for manufacturing functional structures from fibrous composite materials using 3D printing are considered. The task of modeling and visualization of the 3D printing process is formulated. The main specifications of the developed CAD/CAM/CAE system associated with the possibility to set the structure of a facility with its subsequent adjustment and smoothing. triangulation of the print area and modeling of placement of fibers using analytical functions during the printing process are determined. Mathematical tools for solving equations characterizing mechanical properties of composite materials based on wavelet analysis methods, as well as for calculating the optimal directions for placing fibers of composite materials are described.

Keywords:

CAD/CAM/CAE systems, composite materials, 3D printing, digital twins, wavelet analysis

References

  1. Lepik U., Hein H. Haar wavelets with applications, Springer, 2014, 207 p.
  2. Bityukov Yu.I., Platonov E.N. Informatika i ee primeneniya, 2017, vol. 11, no. 4, pp. 94-103.
  3. Bityukov Yu.I., Akmaeva V.N. The use of wavelets in the mathematical and computer modelling of manufacture of the complex-shaped shells made of composite materials, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming and Computer Software, 2016, vol. 9, no. 3, pp. 5–16. DOI:10.14529/mmp160301
  4. Finkelstein A. Multiresolution curves, Proceedings ACM SIGGRAPH, 1994, pp. 261 — 268. DOI:10.1145/192161.192223
  5. Lounsbery M., DeRose T.D., Warren J. Multiresolution Surfaces of Arbitrary Topological Type, ACM Transactions on Graphics, 1997, vol. 16, no. 1, pp. 34-73.
  6. Frazier M.W. An introduction to wavelets through linear algebra, Springer. 1999, 503 p.
  7. Marchuk G.I., Akilov G.P. Metody vychislitel’noi matematiki (Methods of Computational Mathematics), Moscow, Nauka, 1989, 744 p.
  8. Matsuzaki Laboratory. URL: https://www.rs.tus.ac.jp/rmatsuza/index.html
  9. Vasil’ev V.V. Mekhanika konstruktsii iz kompozitsionnykh materialov (Mechanics of composite materials structures), Moscow, Mashinostroenie, 1988, 272 p.
  10. Lavrent’ev M.A., Shabat B.V. Metody teorii funktsii kompleksnogo peremennogo (Methods of the theory of functions of a complex variable), Moscow, Nauka, 1973, 736 p.
  11. Chigrinets E.G., Rodriges S.B., Zabolotnii D.I., Chotchaeva S.K. Trudy MAI, 2020, no. 116. URL: http://trudymai.ru/eng/published.php?ID=121111. DOI: 10.34759/trd-2021-116-17
  12. Lokteva N.A., Ivanov S.I. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=122234. DOI: 10.34759/trd-2021-117-05
  13. Maskaikin V.A. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119976. DOI: 10.34759/trd-2020-115-19
  14. Grigor’eva A.L., Khromov A.I., Grigor’ev Ya.Yu. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115109. DOI: 10.34759/trd-2020-111-1
  15. Kriven’ G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03
  16. Bityukov Yu.I., Deniskin Yu.I. Kompetentnost’, 2016, no. 9–10 (140-141), pp. 73 — 79.
  17. Bityukov Yu.I., Kalinin V.A. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63148
  18. Bityukov Yu.I., Deniskin Yu.I., Deniskina G.Yu. Dinamika sistem, mekhanizmov i mashin, 2017, vol. 5, no. 4, pp. 117–127. DOI: 10.25206/2310-9793-2017-5-4-117-127
  19. Cavaretta A.S., Dahmen W., Micchelli C.A. Stationary Subdivision Schemes, Memoirs of the American Mathematical Society, 1991, vol. 93, no. 453, pp. 186.
  20. Schröder P., Sweldens W. Spherical wavelets: efficiently representing functions on the sphere, Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995, pp. 161–172. DOI: 10.1145/218380.218439
  21. Storn R., Price K. Differential Evolution — a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 1997, no. 11, pp. 341–359. DOI: 10.1023/A:1008202821328
  22. Deniskina G.Y., Deniskin Y.I., Bityukov Y.I. About Biortogonal Wavelets, Created on the Basis of Scheme of Increasing of Lazy Wavelets, Advances in Automation II. RusAutoConf 2020. Lecture Notes in Electrical Engineering. Springer, Cham, 2021, vol. 729, pp. 173–181. DOI: 10.1007/978-3-030-71119-1_18.
  23. Novikov I.Ya., Protasov V.Yu., Skopina M.A. Teoriya vspleskov (Theory of wavelets), Moscow, FIZMATLIT, 2005, 612 p.
  24. Deniskina G.Y., Deniskin Y.I., Bityukov Y.I. About Some Computational Algorithms for Locally Approximation Splines, Based on the Wavelet Transformation and Convolution, Advances in Automation II. RusAutoConf 2020. Lecture Notes in Electrical Engineering. Springer, Cham, 2021, vol. 729, pp. 182–191. DOI: 10.1007/978-3-030-71119-1_19.
  25. Yamanaka Y., Todoroki A., Ueda M., Hirano Y., Matsuzaki R. Fiber Line Optimization in Single Ply for 3D Printed Composites, Open Journal of Composite Materials, 2016, vol. 6, no. 4, pp. 121–131. DOI: 10.4236/ojcm.2016.64012.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход