Algorithms for estimating the number of lunar asteroid detection tools with a vertical orientation of the sight axes


DOI: 10.34759/trd-2022-126-24

Аuthors

Minakov E. P.*, Aleksandrov M. A.*, Verbin A. V.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

Due to the peculiarities of the orbital movement of asteroids approaching the Earth, a significant proportion of them either in principle cannot be detected using existing monitoring tools located on the surface of the Earth, or detection can occur too late. The lack of influence of the atmosphere on optical observation means leads to the advantages of the location of asteroid detection means in space. In this article, a study is carried out on one of the possible ways of their stationary location — uniform distribution with regard to visibility zones on the surface of the moon.

An algorithm is proposed, which allows on the basis of initial data on the angle of solution and the maximum range of detection of dangerous space objects by lunar means. The zone of near and long-range explosive detection, as well as the zone of continuous multiple detection of asteroids, their description and illustrations are given. Computational experiments were carried out using the developed algorithm for estimating the number of means for detecting asteroids when placing on the entire surface of the Moon or its part, dependencies of the angular distance between the standing points and the angular dimensions of the visibility zones of the means for detecting asteroids on the maximum range of detecting asteroids were obtained.

In addition, an algorithm was developed and the number of means for detecting asteroids with vertical orientation of the sighting axes was estimated with the exception of a part of the Lunar Surface for their placement, due to the closure of the outer space region by the Earth («dead zone» of asteroid detection means), when placed on the entire surface of the Moon or its part, the dependence of the angular distance between the standing points and the angular dimensions of the visibility zones of the asteroid detection means on the maximum detection range of asteroids is also obtained.

The presented algorithms for estimating the angular distance between the points of standing on the surface of the Moon of the same type of asteroid detection means with vertical orientation of the sighting axes and their number for forming the asteroid detection line allow obtaining correct results and can be used for further research to determine the parameters of the asteroid detection line zones, reduce the number of asteroid detection means and estimate the probability of asteroid detection.

Keywords:

Moon, asteroid, asteroid detection means, scan zone, detection zone, asteroid detection boundary, spherical triangle

References

  1. Shustov B.M., Rykhlova L.V. Asteroidno-kometnaya opasnost’: vchera, segodnya, zavtra (Asteroid-comet danger: yesterday, today, tomorrow), Moscow, Fizmatlit, 2010, 384 p.
  2. Lunnaya sensatsiya: Est’ voda. URL: https://www.techinsider.ru/science/9538-lunnaya-sensatsiya-est-voda/
  3. LCROSS Impact Data Indicates Water on Moon, NASA. URL: https://www.nasa.gov/mission_pages/LCROSS/main/prelim_water_results.html
  4. Bogacheva M.N. Trudy MAI, 2010, no. 38. URL: https://trudymai.ru/eng/published.php?ID=14527
  5. Bagrov A.V., Dmitriev A.O., Leonov V.A., Moskatin’ev I.V., Sysoev V.K. Trudy MAI, 2020, no. 112. URL: https://trudymai.ru/eng/published.php?ID=116356. DOI: 10.34759/trd-2020-112-13
  6. Strogonova L.B., Stolyarchuk V.A., Makarova S.M., Vasin Yu.A. Trudy MAI, 2013, no. 67. URL: https://trudymai.ru/eng/published.php?ID=41586
  7. Okonchatel’noe dokazatel’stvo: I snova o vode. URL: https://www.techinsider.ru/science/9683-okonchatelnoe-dokazatelstvo-i-snova-o-vode/
  8. Asteroid Impact & Deflection Assessment (AIDA) collaboration. URL: https://www.esa.int/Space_Safety/Hera/Asteroid_Impact_Deflection_Assessment_AIDA_collaboration
  9. Asteroid impact mission targets Didymos. URL: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Asteroid_impact_mission_targets_Didymos
  10. Konstantinovskaya L.V. Prognoz i predotvrashchenie kometno-asteroidnoi opasnosti. (Forecast and prevention of comet-asteroid danger). URL: http://www.astronom2000.info/different/pipao/
  11. Sokolov B.V., Minakov E.P. Trudy SPIIRAN, 2016, no 5, pp. 182-197.
  12. Degtyar’ V.G., Volkov V.A. Raketnaya kontseptsiya sistemy protivoasteroidnoi zashchity Zemli (Missile Concept of Earth Anti-Asteroid Protection System), Moscow, Mashinostroenie, 2014, 334 p.
  13. Ivanov V.L., Men’shikov V.A., Pchelintsev L.A., Lebedev V.V. Kosmicheskii musor. Problemy i puti resheniya (Space debris. Problems and solutions), Moscow, Patriot, 1996, vol. 1, 360 p.
  14. Freedman W.L., Madore B.F., Gibson B.K., Ferrarese L., Kelson D.D. et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, The Astrophysical Journal, IOP Publishing, 2001, vol. 553, issue 1, pp. 47-72. DOI:10.1086/320638.
  15. Nancy Grace Roman. Exploring the Universe: Space-Based Astronomy and Astrophysics, NASA SP-2001-4407: Exploring the Unknown: Selected Documents in the History of the US Civil Space Program, Washington, DC, 2001, vol. 5, pp. 501.
  16. Jedrzejewski R.I., Hartig G., Jakobsen P., Crocker J.H., Ford H.C. In-orbit performance of the COSTAR-corrected Faint Object Camera, The Astrophysical Journal, 1994, vol. 435, no. 1, pp. L7-L10. DOI:10.1086/187581.
  17. Spitzer Lyman Jr. History of the Space Telescope, Quarterly Journal of the Royal Astronomical Society, 1979, vol. 20, pp. 29-36.
  18. Mikisha A.M. Kosmicheskie metody v geodezii (Space methods in geodesy), Moscow, Znanie, 1983, 54 p.
  19. Kustodov A.Yu., Pavlov V.P. Inzhenernyi zhurnal: nauka i innovatsii, 2017, no. 6. DOI: 10.18698/2308-6033-2017-6-1659
  20. Inzhenernyi spravochnik po kosmicheskoi tekhnike (Engineering Guide to Space Engineering), — MO SSSR, 1969. — 696 s.
    21. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. (Mathematics Handbook for Scientists and Engineers), Moscow, Nauka, 1978, 831 p.
  21. Vasil’ev N.B., Gutenmakher V.L. Kvant, 1988, no. 2. URL: https://kvant.ras.ru/1988/02/summa_uglov_sfericheskogo_mnog.htm
  22. Bronshtein I.N., Semendyaev K.A. Spravochnik po matematike (Manual of mathematics for engineers and students of VTUZOV), Moscow, OGIZ, 1948, 556 p.
  23. Minakov E.P., Sokolov B.V., Shaldaev S.E., Alexandrov M.A. Calculation and study of spatial and temporal characteristics of asteroid attack boundaries by orbital means, Proceedings of SPIIRAN, 2019, vol. 18, pp. 1462-1490. DOI:10.15622/sp.2019.18.6.1462-1490
  24. Barinov K.N., Burdaev M.N., Mamon P.A. Dinamika i printsipy postroeniya orbital’nykh sistem kosmicheskikh apparatov (Dynamics and principles of spacecraft orbital systems construction), Moscow, Mashinostroenie, 1975, 232 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход