Evaluation of damping properties of composites


DOI: 10.34759/trd-2022-127-05

Аuthors

Kriven G. I.

PJSC Radiofizika, Geroev Panfilovtsev street, 10, Moscow, 125480, Russia

e-mail: kriven_galina@inbox.ru

Abstract

The article studies fibrous composites, particularly, analyzes their effective damping properties, natural frequencies and loss coefficients. Both effective dissipative and wave properties are being defined by the presence of a viscoelastic layer laid between the elastic fiber of high rigidity and a less rigid matrix. Analytical evaluations employing linear visoelastic analogy method are being presented. The author revealed that the three phases method was more preferable than the Race method for determining parameters with high accuracy. Whiskerized systems, grown on the fiber surface and submerged into the viscoelastic layer, were proposed for use to enhance dissipative properties and retain mechanical ones. The author conducted studies on oscillations damping of the stratified composite hinged beam. The viscoelastic interlayer is being inserted into the composite beam to enhance its damping properties. Resonant frequency and modal losses coefficient of the beam are being evaluated by the Bernoulli-Euler beam model and Timoshenko model. It is noted that in case of transversely oriented fibers both models, i.e. the Bernoulli-Euler beam model and Timoshenko model, account for the shear deformations.

Keywords:

composite material, damping properties, viscoelastic analogy method, modification of fiber surface, vibration damping

References

  1. Nashif A., Dzhouns D., Khenderson Dzh. Dempfirovanie kolebaniĭ (Vibration damping), Moscow, Mir, 1988, 488 p.
  2. Polyakov P.O., Shesterkin P.S. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168998. DOI: 10.34759/trd-2022-126-12
  3. Rabinskii L.N., Babaitsev A.V., Shesterkin P.S. Mekhanika kompozitsionnykh materialov i konstruktsii, 2022, vol. 28, no. 3, pp. 387-398.
  4. Wu G., Yang J.-M. The mechanical behavior of GLARE laminates for aircraft structures, JOM: the journal of the Minerals, Metals & Materials Society, 2005, vol. 57 (1), pp. 72–79. DOI:10.1007/s11837-005-0067-4
  5. Vogeslang L.B., Volt A. Development of Fibre Metal Laminates for Advanced Aerospace Materials, Journal of Materials Processing Technology, 2000, vol. 103 (1), pp. 1–5. DOI:10.1016/S0924-0136(00)00411-8
  6. Prokudin O.A., Rabinskii L.N., Tkhang Ch.K. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161419. DOI: 10.34759/trd-2021-120-06
  7. Prokudin O.A., Solyaev Yu.O., Babaitsev A.V., Artem’ev A.V., Korobkov M.A. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, pp. 260-270. DOI:10.15593/perm.mech/2020.4.22
  8. Botelho E.C., Silva R.A., Pardini L.C., Rezende M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures, Materials Research, 2006, vol. 9 (3), pp. 247–256. DOI:10.1590/S1516- 14392006000300002
  9. Solomatov V.I., Cherkasov V.D., Fomin N.E. Vibropogloshchayushchie kompozitsionnye materialy (Vibration-absorbing composite materials), Saransk, Izd-vo Mordovskogo universiteta, 2001, 96 p.
  10. Ungar E.E. Loss factors of viscoelastically damped beam structures, Journal of the Acoustical Society of America, 1962, vol. 34 (8), pp. 1082-1089. URL: https://doi.org/10.1121/1.1918249
  11. Jones D.I.G. Handbook of Viscoelastic Vibration Damping. Wiley, New York, 2001, 416 p.
  12. Rao M.D. Recent applications of viscoelastic damping for noisecontrol in automobiles and commercial airplanes, Journal of Sound and Vibration, 2003, vol. 262 (3), pp. 457-474. URL: https://doi.org/10.1016/S0022-460X(03)00106-8
  13. D’Alessandro V., Petrone G., Franco F., Rosa S.D. A review of the vibroacoustics of sandwich panels: Models and experiments, Journal of Sandwich Structures Materials, 2013, vol. 15 (5), pp. 541-582. URL: https://doi.org/10.1177/1099636213490588
  14. Njuguna J. Lightweight Composite Structures in Transport Design, Manufacturing, Analysis and Performance, Woodhead publishing, Cambridge, 2016, 474 p.
  15. Lurie S., Solyaev Y., Ustenko A. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers, Applied Composite Materials, 2019, vol. 26, pp. 389–408. DOI:10.1007/s10443-018-9698-9
  16. Gusev A.A., Lurie S.A. Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces, Macromolecules, 2009, no. 42, pp. 5372–5377. DOI:10.1021/ma900426v
  17. Lurie S., Minhat M., Tuchkova N., Soliaev J. On remarkable loss amplification mechanism in filled and layered composite materials, Applied Composite Materials, 2014, vol. 21 (1), pp.179-196. DOI:10.1007/s10443-013-9371-2
  18. Kriven’ G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03
  19. Lurie S.A, Minhat M. Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites, Composites B, 2014, vol. 61, pp. 26-40. DOI:10.1016/J.COMPOSITESB.2014.01.021
  20. Lurie S.A., Volkov-Bogorodskii D.B., Kriven G.I., Rabinskiy L.N. On estimating structural stresses in composites with whiskerized fibers, International Journal of Civil Engineering & Technology (IJCIET), 2018, vol. 9 (6), pp. 294-308.
  21. Song Q., Li Ke-zhi, Li Hai-liang, Li He-jun, Chang Ren. Grafting straight carbon nanotubes radially onto carbon fibers and their effect on the mechanical properties of carbon/carbon composites, Carbon, 2012, vol. 50, pp. 3943-3960. DOI:10.1016/j.carbon.2012.03.023
  22. Lv P., Feng Y., Zhang P., Chen H., Zhao N., Feng W. Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers, Carbon, 2011, vol. 49, pp. 4665-4673. DOI:10.1016/j.carbon.2011.06.064
  23. Zhang Fu-Hua, Wang Rong-Guo, He Xiao-Dong, Wang C., Ren Li-Ning. Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid, Journal of Material Science, 2019, vol. 44 (13), pp. 3574-3577. DOI:10.1007/s10853-009-3484-x
  24. Sharma S.P., Lakkad S.C. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites, Surface & Coatings Technology, 2010, vol. 205 (2), pp. 350-355. DOI:10.1016/j.surfcoat.2010.06.055
  25. Kristensen R.M. Vvedenie v mekhaniku kompozitov (Introduction to the mechanics of composites) Moscow, Mir, 1982, 334 p.
  26. Herve E., Zaoui A. N-layered inclusion-based micromechanical model, International Journal of Engineering Science, 1993, vol. 31 (1), pp. 1–10. DOI:10.1016/0020-7225(93)90059-4
  27. Lur’e S.A., Kriven’ G.I., Rabinskii L.N. Kompozity i nanostruktury, 2019. vol. 11, no. 1, pp. 1–15.

  28. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход