The translational motion of a cylinder along its axis in a space filled with a non-linear viscoplastic fluid


DOI: 10.34759/trd-2022-127-06

Аuthors

Kolodezhnov V. N.*, Veretennikov A. S.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: bars4558@mail.ru
**e-mail: vas3141@gmail.com

Abstract

The article studies fibrous composites, particularly, analyzes their effective damping properties, natural frequencies and loss coefficients. Both effective dissipative and wave properties are being defined by the presence of a viscoelastic layer laid between the elastic fiber of high rigidity and a less rigid matrix. Analytical evaluations employing linear visoelastic analogy method are being presented. The author revealed that the three phases method was more preferable than the Race method for determining parameters with high accuracy. Whiskerized systems, grown on the fiber surface and submerged into the viscoelastic layer, were proposed for use to enhance dissipative properties and retain mechanical ones. The author conducted studies on oscillations damping of the stratified composite hinged beam. The viscoelastic interlayer is being inserted into the composite beam to enhance its damping properties. Resonant frequency and modal losses coefficient of the beam are being evaluated by the Bernoulli-Euler beam model and Timoshenko model. It is noted that in case of transversely oriented fibers both models, i.e. the Bernoulli-Euler beam model and Timoshenko model, account for the shear deformations.

Keywords:

rheological model, viscoplastic fluid, shear rate, shear stress, viscosity

References

  1. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Fluid Mechanics), Moscow, Drofa, 2003, 840 p.
  2. Astarita Dzh., Marruchchi Dzh. Osnovy gidromekhaniki nen’yutonovskikh zhidkostei (Principles of non-Newtonian Fluid Mechanics), Moscow, Mir, 1978, 311 p.
  3. Litvinov V.G. Dvizhenie nelineino vyazkoi zhidkosti (Motion of nonlinear viscous fluid), Moscow, Nauka, 1982, 376 p.
  4. Vinogradov G.V., Malkin A.Ya. Reologiya polimerov (Polymer Rheology), Moscow, Khimiya, 1977, 439 p.
  5. Ageev R.V., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2014, no. 78. URL: https://trudymai.ru/eng/published.php?ID=53466
  6. Vinnikov V.V., Reviznikov D.L. Trudy MAI, 2004, no. 17. URL: https://trudymai.ru/eng/published.php?ID=34203
  7. Lebedev R.V., Lifshits S.A. Trudy MAI, 2011, no. 44. URL: https://trudymai.ru/eng/published.php?ID=25016
  8. Lebedev R.V., Lifshits S.A. Trudy MAI, 2011, no. 46. URL: https://trudymai.ru/eng/published.php?ID=26013
  9. Wetzel E.D., Lee Y.S., Egres R.G., Kirkwood K.M., Kirkwood J.E., Wagner N.J. The Effect of Rheological Parameters on the Ballistic Propeties of Shear Thickening Fluid (STF) — Kevlar Composites, AIP Conference Proceedings, 2004, vol. 712, pp. 288-293. DOI: 10.1063/1.1766538
  10. Egres R.G., Wagner N.J. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition, Journal of Rheology, 2005, vol. 49 (3), pp. 719-746. DOI: 10.1122/1.1895800
  11. Bischoff White E.E., Chellamuthu M., Rothstein J.P. Extensional rheology of shear-thickening cornstarch and water suspension, Rheologica Acta, 2010, vol. 49(2), pp. 119-129. DOI: 10.1007/s00397-009-0415-3
  12. Biao Yang, Sheng Wang, Guo Zhi Xu, Fei Xin. Preparation of SiO2/PEG Shear Thickening System by Centrifugal Dispersion, Advanced Materials Research, 2012, vol. 560-561, pp. 586 — 590. DOI: 10.4028/www.scientific.net/AMR.560-561.586
  13. Brown E., Jaeger H.M. The role of dilation and confining stress in shear thickening of dense suspensions, Journal of Rheology, 2012, vol. 56, pp. 875-923. DOI: 10.48550/arXiv.1010.4921
  14. Singh A., Mari R., Denn M.M., Morris J.F. A constitutive model for simple shear of dens frictional suspensions, Journal of Rheology, 2018, vol. 62, pp. 457-468. DOI: 10.1122/1.4999237
  15. Duan Y., Keefe M., Bogetti T., Cheeseman B. Modeling friction effects on the ballistic impact behavior of a single-ply high-strength, International Journal of Impact Engineering, 2005, vol. 31(8), pp. 996-1012. DOI: 10.1016/j.ijimpeng.2004.06.008
  16. Kalman D.P., Schein J.B., Hougton J.M., Laufer C.H.N., Wetzel E.D., Wagner N.J. Polimer dispersion based shear thickening fluid-fabrics for protective applications, Proceedings of SAMPE, Baltimore, MD, 2007, pp. 1-9.
  17. Hasanzadeh M., Mottaghitalab V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor, Journal of Materials Engineering and Performance, 2014, vol. 23 (4), pp. 1182-1196. DOI: 10.1007/s11665-014-0870-6
  18. Nilakantan G., Merrill R.L., Keefe M., Gillespie Jr. E.D., Wetzel E.D. Experimental investigation of the role of frictional yarn pull-out and windowing on the probabilistic impact response of Kevlar fabrics, Composites Part B: Engineering, 2015, vol. 68, pp. 215-229. DOI: 10.1016/j.compositesb.2014.08.033
  19. Khodadadi A., Liaghat Gh., Vahid S., Sabet A.R., Hadavinia H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid, Composites Part B: Engineering, 2019, vol. 162, pp. 643-652. DOI: 10.1016/j.compositesb.2018.12.121
  20. Ting-Ting Li, Wenna Dai, Liwei Wu, Hao-Kai Peng, Xiayun Zhang, Bing-Chiuan Shiu, Jia-Horng Lin, Ching-Wen Low. Effects of STF and Fiber Characteristics on Quasi-Static Stab Resistant Properties of Shear Thickening Fluid (STF)-Impregnated UHMWPE/Kevlar Composite Fabrics, Fibers and Polymers, 2019, vol. 20(2), pp. 328-336. DOI: 10.1007/s12221-019-8446-6
  21. Anistratenko V.A., Koshevaya V.N., Valovoi B.N. Izvestiya vuzov. Pishchevaya tekhnologiya, 1992, no. 1, pp. 54-57.
  22. Galindo-Rosales F.J., Rubio-Hernandez F.J. Numerical simulation in steady flow of non-Newtonian fluids in pipes with circular cross-section, Numerical Simulations — Examples and Applications in Computational Fluid Dynamics, 2010, pp. 3-23. DOI: 10.5772/12900
  23. Galindo-Rosales F.J., Rubio-Hernandez F.J. Sevilla A. An apparent viscosity function for shear thickening fluids, Journal of Non-Newtonian Fluid Mechanics, 2011, vol. 166(5), pp. 321-325. DOI: 10.1016/j.jnnfm.2011.01.001
  24. Kolodezhnov V.N. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2014, no. 3, pp. 3-14.
  25. Vázquez-Quesada A., Wagner N. J., Ellero M. Planar channel flow of a discontinuous shear-thickening model fluid: Theory and simulation, Physics of Fluids, 2017, vol. 29(10), pp. 103-104. DOI: 10.1063/1.4997053
  26. Skul’skii O.I. Vychislitel’naya mekhanika sploshnykh sred, 2020, vol. 13, no. 3, pp. 269-278. DOI: 10.7242/1999-6691/2020.13.3.21
  27. Kolodezhnov V.N., Veretennikov A.S. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i Tekhnologii, 2020, no. 3, pp. 32-44.
  28. Kolodezhnov V.N., Veretennikov A.S. 2021, no. 10, pp. 53-58. DOI: 10.17513/snt.38854
  29. Kolodezhnov V.N., Veretennikov A.S. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168169. DOI: 10.34759/trd-2022-125-09
  30. Kolodezhnov V.N. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 2013, no. 5 (50), pp. 211–215.

  31. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход