Development of USRP verification methodology for high-precision radio system research


DOI: 10.34759/trd-2022-127-12

Аuthors

Abramov A. A.*, Yakush N. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: artyom.abramov662@yandex.ru
**e-mail: yachkuch@gmail.com

Abstract

Currently, in telecommunications, there are problems of inefficient use of spectrum [3], the inability to flexibly control hardware devices, which have led to an increasing interest in software-controlled radio (SDR), which has proven itself as a reliable system for thorough analysis of radio frequency signals with the possibility of flexible control and modification [4].

One of the prominent representatives of SDR is the high-precision and inexpensive USRP 2901 model from the 29xx series from National Instruments, capable of solving the problems of prototyping radio systems, radio reconnaissance, direction finding, creating local positioning systems, developing coherent multi-channel transceiver systems and solving other important problems in the aerospace sphere.

This work is devoted to the development and testing of the method of verification of USRP 29xx series devices for high-precision experimental studies for solving problems of a wide range in the field of information communications using the Omega radio complex. The subject of the study is the evaluation of the effectiveness of using SDR on the NI platform.

To obtain the data closest to the true ones, to exclude the maximum number of different types of errors, the work analyzed in detail the plan and stages of experiments, in particular, the planning of experiments at the tactical level, the description of which is indicated in the publications [18, 19]. The calculation of the required sample ensures the required probability and reliability of the results [20]. However, there is no information in the technical documentation for USRP devices that they can be used for high-precision research. After planning the experiments, a method for verifying devices was developed, which included specific 6 stages of experiments that evaluate physical values that characterize the accuracy and quality of USRP equipment.

The following results were obtained as a result of testing this method:

  1. The frequency error of the transmitted signal is determined and recommendations for setting the frequency shift function of the generator are proposed.
  2. A decrease in the average signal power in the middle of the Wi-Fi band (2.4 GHz) was recorded. Hence, weak signals will be less efficient to transmit over a given range.
  3. Linear and uniform amplification of the radio signal was noted, regardless of the selected frequency, when the gain deviates not more than 5 dB from the average value, which is much better than, for example, the RTL-SDR amplifier.
  4. It is advisable to use an amplifier on Wi-Fi radio channels only up to 54 dB, then it is irrational.
  5. Connecting a power supply to USRP does not significantly affect the shape of the spectrum unless both channels of the USRP device are used.

Keywords:

wireless networks, SDR, USRP, IEEE 802.11, frequency spectrum, prototyping of radio systems, high-precision experiment

References

  1. Guber Ya.A., Mikhailov V.Yu., Vitomskii E.V. Tekhnologii informatsionnogo obshchestva, 2019, vol. 1, pp. 204-208.
  2. Shevtsov V.A., Borodin V.V., Krylov M.A. Trudy MAI, 2016, no. 85. URL: https://trudymai.ru/eng/published.php?ID=66417
  3. Mahajan R., Bagai D. Cognitive Radio Technology: Introduction and its Applications, International Journal of Engineering Research and Development, 2016, vol. 12, issue 9, pp. 17-24.
  4. Kareem J Baddour, Octavia A. Dobre, Menguc Oner et al. Special issue on Cognitive radio: The road for its second decade, Physical Communication, 2013, vol. 9, pp. 145–147. DOI: 10.1016/j.phycom.2013.08.002
  5. Muradi V.S., Paithane R.K., Ahmed A. Pawar A. Spectrum sensing in cognitive radio using Labview and NI USRP, 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19-20 Jan., 2018. DOI: 10.1109/ICISC.2018.8399019
  6. Thameur H.B., Dayoub I. Real-Time In-Lab Test of Eigenvalue-Based Spectrum Sensing Using USRP RIO SDR Boards, IEEE Communications Letters, 2021, vol. 25, issue 3, pp. 1029–1032. DOI: 10.1109/LCOMM.2020.3037010
  7. Ramya V.U., Thanikaiselvan V. Image Encryption using DNA rules & Transmission of an encrypted digital image using USRP-2901 and MATLAB, 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), Vellore, India, 14 Nov., 2019. DOI: 10.1109/ViTECoN.2019.8899561
  8. Serkin F.B., Vazhenin N.A. USRP Platform For Communication Systems Research, 15th International conference on transparent optical networks, ICTON, 2013. DOI:10.1109/ICTON.2013.6602738
  9. Marín-García J.A., Romero-Franco C., Alonso J.I. A Software Defined Radio Platform for Decode and Forward Relay Nodes Implementation, 2019 IEEE Conference on Standards for Communications and Networking (CSCN), Granada, Spain, 16 Dec., 2019. DOI: 10.1109/CSCN.2019.8931410
  10. Bryus A. Blek. Vvedenie v sistemy radiosvyazi. Laboratornye raboty s NI USRP i LabVIEW Communications (Introduction to radio communication systems. Labs with NI USRP and LabVIEW Communications), Moscow, National Instruments, 2014, 157 p.
  11. Bakhtin A.A., Omel’yanchuk E.V., Murav’ev I.V. Metodicheskie voprosy prepodavaniya infokommunikatsii v vysshei shkole, 2021, vol. 10, no. 2, pp. 4-11.
  12. Krikov D.S. Trudy MAI, 2018, no. 98. URL: https://trudymai.ru/eng/published.php?ID=90403
  13. «OMEGA-M5» — kompleks radiokontrolya, «NOVO», available at: https://novocom.ru/ru/node/11
  14. Fedorov S.M., Boiko O.V., Pasternak Yu.G., Pirogov A.A. Sistemy podvizhnoi radiosvyazi (Mobile radio systems), Voronezh, Izd-vo VGTU, 2019, 146 p.
  15. Kryukov Ya.V., Pokamestov D.A., Rogozhnikov E.V., Novichkov S.A., Lakontsev D.V. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki, 2020, vol. 23, no. 3, pp. 31-37. DOI: 10.21293/1818-0442-2020-23-3-31-37
  16. Srilatha M., Harini S., Sushanth T. Community Radio Using USRP 2920, 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 13 Nov., 2021. DOI: 10.1109/GCAT52182.2021.9587846
  17. Mikhailov V.Yu., Mazepa R.B. Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov, 2020, vol. 11, no. 3, pp. 43-51.
  18. Pugachev B.C. Teoriya veroyatnostei i matematicheskaya statistika (Theory of Probability and Mathematical Statistics), Moscow, FIZMATLIT, 2002, 496 p.
  19. Sovetov B.Ya., Yakovlev S.A. Modelirovanie system (System modeling), Moscow, Vysshaya shkola, 1985, 271 p.
  20. Panichev V.V., Solov’ev N.A. Komp’yuternoe modelirovanie (Computer modeling: tutorial), Orenburg, GOU OGU, 2008, 130 p.
  21. GOST R 50779.21-96. Statisticheskie metody. Pravila opredeleniya i metody rascheta statisticheskikh kharakteristik po vyborochnym dannym. Chast’ 1. Normal’noe raspredelenie (Statistical methods. Rules for determining and methods for calculating statistical characteristics from sample data. Part 1. Normal distribution), Moscow, Gosstandart, 1996.
  22. 802.11-2016. IEEE Standard for Information technology. Telecommunications and information exchange between systems Local and metropolitan area networks. Specific requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2016.
  23. Gurevich O.S., Kessel’man M.G., Trofimov A.S., Chernyshov V.I. Trudy MAI, 2017, no. 94. URL: https://trudymai.ru/eng/published.php?ID=81143
  24. Rath H.K., Timmadasari S., Panigrahi B., Simha A. Realistic indoor path loss modeling for regular WiFi operations in India, 2017 Twenty-third National Conference on Communications (NCC), Chennai, India, 2017. DOI: 10.1109/NCC.2017.8077107
  25. R820T, RTL2832U SDR USB STICK — Sensitivity, dynamic range. SimonsDialogs, available at: http://www.simonsdialogs.com/2014/09/r820t-rtl2832u-sdr-usb-stick-sensitivity-dynamic-range
  26. Gavrilenko V.G., Yashnov V.A. Rasprostranenie radiovoln v sovremennykh sistemakh mobil’noi svyazi (Propagation of radio waves in modern mobile communication systems), Nizhnii Novgorod, NNGU im. N. I. Lobachevskogo, 2003, 148 p.
  27. Boev S.F., Pimenov P.N., Pronin S.A., Shevyrev A.V. Trudy MAI, 2017, no. 93. URL: https://trudymai.ru/eng/published.php?ID=80441

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход