Optimization of the uav multi-segment hovering mode in a heterogeneous flight zone

DOI: 10.34759/trd-2022-127-17


Aslanova A. B.

National Aerospace Agency of Azerbaijan Republic, NASA, 1, Suleyman Sani Akhundov str., Baku, AZ1115, Azerbaijan Republic

e-mail: aslanova.a.b.@mail.ru


The presented article proposes a method for the errors operational evaluation in the alignment of radar and optoelectronic stations applied in navigation and weapon-aiming aircraft complexes. Its actuality is associated with the fact that the alignment accuracy of the location systems determines potential effectiveness of the aviation complexes, since the alignment errors cause the need to increase the location systems fields of vision and, as the result, lead to the aircraft in the potential efficiency decrease. These errors minimization will allow narrowing their fields of vision, while preserving radars search capabilities, and enhancing detecting capability and spatial resolution of optoelectronic systems by the integral background illumination reduction. As the result, both detection range and the probability of objects recognizing will be enhanced. The currently developed methods for the alignment errors evaluating do not allow performing operational correction of the of directional patterns relative position of the onboard location systems of navigation and weapon-aiming complexes in real operating conditions, which requires new evaluation methods development. Natural requirements for these methods are the possibility of obtaining evaluations in real time or close to it, as well as the possibility of employing these evaluations for correcting relative location of the radars fields of view. Evaluation methods developed as of today do not meet these requirements, which stresses the relevance of the problem being solved. The problem of errors evaluation in the alignment of the onboard location systems is set and solved as a filtration problem, since in general case the object of the study is non-stationary. The authors developed an algorithm for mathematical formalization of the alignment errors behavior during the flight of an aircraft, allowing performing correction of the directional diagrams position of location systems in real time based on the values of their evaluation. Model experiments were conducted to confirm correctness of the developed solutions.


UAV, aerodynamic drag, optimization, soaring, adaptive control


  1. Soaring Techniques Chapter 10. URL: https://www.scribd.com/document/24475859/Chapter-10-Basic-Soaring-Techniques
  2. Bencatel, J.T. De Sousa, A. Girard. Atmospheric flow field models applicable for aircraft endurance extension, Progress in Aerospace Sciences, 2013, vol. 61 (1). DOI: 10.1016/j.paerosci.2013.03.001
  3. Allen. Updraft model for development of autonomous soaring uninhabited air vehicles, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006. DOI:10.2514/6.2006-1510
  4. Kostyanoi E.M. Trudy MAI, 2011, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25424&PAGEN_2=2
  5. Formalev V.F., Selin I.A. Trudy MAI, 2010, no. 37. URL: https://trudymai.ru/eng/published.php?ID=13424
  6. Kim K.Kh., Bezverbyi V.K., Gushchin V.N. Trudy MAI, 2006, no. 22. URL: https://trudymai.ru/eng/published.php?ID=34098
  7. Zakharov M.A. Trudy MAI, 2004, no. 17. URL: https://trudymai.ru/eng/published.php?ID=34200
  8. Yudin V.N., Nguen Z.Kh. Trudy MAI, 2003, no. 12. URL: https://trudymai.ru/eng/published.php?ID=34465
  9. Zakharov M.A. Trudy MAI, 2003, no. 11. URL: https://trudymai.ru/eng/published.php?ID=34475
  10. Zakharov M.A. Trudy MAI, 2002, no. 9. URL: https://trudymai.ru/eng/published.php?ID=34575
  11. Budkina E.M. Trudy MAI, 2001, no. 6. URL: https://trudymai.ru/eng/published.php?ID=34637
  12. Pankov A.R., Popov A.S. Trudy MAI, 2002, no. 7. URL: https://trudymai.ru/eng/published.php?ID=34626
  13. Jie Chen, Zhiwei Shi, Menqbei Zhou, et al. Modeling and simulation of UAV static soaring based on multi-hole probe, AIP Advances, 2021. URL: https://doi.org/10.1063/5.0055276
  14. Zsuzsa Akos, Mate Nagu, Severin Leven, Tamas Vicsek. Thermal soaring flight of birds and unmanned aerial vehicles, Biological Physics, 2010. URl: https://doi.org/10.48550/arXiv.1012.0434
  15. Hauert S., Zufferey J.C., Floreano D. Evolved swarming without positioning information in aerial communication relay, Autonomous Robots, 2009, vol. 26 (1). DOI:10.1007/s10514-008-9104-9
  16. Tucker V. Gliding birds: The effect of variable wing span, Journal of Experimental Biology, 2001, pp. 13333-58.
  17. James Usevitch, David Usevitch, Daniel Fry. Optimization of High Endurance Single Wing UAV, 2016. URL: https://zenodo.org/record/49616/files/optimization-high-endurance1.pdf
  18. Drone Building and Optimization: How to Increase Your Flight Time, Payload and Overall Efficiency, Tyto Robotics. URL: https://www.tytorobotics.com/pages/ebook-landing
  19. Jack W. Langelaan. Long Distance / Duration Trajectory Optimization for Small UAVs, Guidance, Navigation and Control Conference, August 16-19. 2007, Hilton Head, South Carolina, USA.
  20. El’sgol’ts L.E. Differentsial’nye uravneniya i variatsionnoe ischislenie (Differential equations and calculus of variations), Moscow, Nauka, 1974, 472 p.


mai.ru — informational site MAI

Copyright © 2000-2024 by MAI