Тhe method for determining the coordinates of ground objects by an unmanned aerial vehicle using a laser rangefinder


DOI: 10.34759/trd-2023-128-14

Аuthors

Korovin A. V.1*, Savin D. I.2**

1. Concern «Sozvezdie», Voronezh, Russia
2. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: htotam2005@yandex.ru
**e-mail: denissawi@yandex.ru

Abstract

The article proposes a method for the ground objects coordinates determining from an unmanned aerial vehicle, which allows increasing the accuracy of of the ground objects location determining. The aircraft is supposed to fly in a circle with the ground object observation until the achieved value of the spatial geometric factor is less than three. The accuracy increase occurs through the observation time increase for the object being explored, and accumulation of measured by the laser rangefinder ranges to it. The unmanned aerial vehicle absolute proper coordinates are assumed known in each moment of range measuring. Estimates of the carrier absolute coordinates were obtained with the navigation equipment of the global satellite navigation systems consumers. This approach will allow determining coordinates in hard-to-reach and impassable terrain with high accuracy when solving various tasks.

The unmanned aerial vehicle is being equipped with navigation equipment of global navigation satellite systems consumers being a source of navigation information. The carrier is also equipped with a laser rangefinder on a gyro-stabilized platform, which serves to determine distances to the ground-based object of interest. The coordinates of a ground-based object are being determined by the combined application of angle-rangefinder and integral rangefinder methods for coordinates determining. At the initial stages, the ground-based object coordinates are being estimated by the angle-rangefinder method with some insufficient accuracy. Further, accumulations of measurements and refinement of the coordinates of the ground-based object are performed by the integral rangefinder method.

The article presents the studies of the flight altitude, speed of an unmanned aerial vehicle and the accuracy of navigation equipment of consumers of global navigation satellite systems impact on the achieved accuracy of the obtained estimates of the coordinates of a ground-based reconnaissance object. Practical recommendations on the unmanned aerial vehicle piloting for achieving maximum accuracy of the coordinates of the ground-based object being explored are given based on the results of the studies. The issue on the necessary monitoring duration at various flight altitudes and the fly-by radius to achieve the best accuracy of coordinates assessment was studied as well.

Keywords:

integral rangefinder method, angle-rangefinder method, unmanned aerial vehicle, navigation accuracy, global navigation satellite system, laser rangefinder

References

  1. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Rol’ i mesto v sostave obshchegosudarstvennoi edinoi informatsionno-upravlyayushchei sistemy voennogo naznacheniya. Sistemy radioupravleniya. Kn.1 Sostoyanie i tendentsii razvitiya sistem radioupravleniya (Aviation complexes of radar patrol and guidance. The role and place in the composition of the national unified information and control system for military purposes // Radio control systems. Book 1 The state and trends in the development of radio control systems), Moscow, Radiotekhnika, 2013, pp. 128-131.
  2. Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya (GLONASS. Principles of construction and functioning), Moscow, Radiotekhnika, 2010, 800 p.
  3. Korovin A.V., Savin D.I. IV Vserossiiskaya nauchno-prakticheskaya konferentsiya «Avionika»: sbornik trudov. Voronezh, VUNTs VVS «VVA», 2020, pp. 44-55.
  4. Kovalev F.N., Kondrat’ev V.V. Zhurnal radioelektroniki, 2014, no. 4. URL: http://jre.cplire.ru/jre/apr14/1/text.pdf
  5. Pikalov S.A. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29148
  6. Buslov I.A., Gordeev A.E., Dorrer G.A., Kobyzhakova S.V., Yarovoi S.V. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2016, vol. 18, no. 2-3, pp. 858-863.
  7. Velikanov A.V., Shishkin A.V., Kochetova Zh.Yu., Osipov V.S., D’yakova N.A. Nauchnyi vestnik GOSNII GA, 2022, no. 40, pp. 154-163.
  8. Levin A.V., Koval’chuk V.A. Nauchnyi rezerv, 2018, no. 3 (3), pp. 63-69
  9. Sherenkov A.G. Rossiya molodaya: peredovye tekhnologii — v promyshlennost’, 2011, no. 1, pp. 243-246.
  10. Lapin’sh V.V., Severov N.V. Transport: nauka, tekhnika, upravlenie. Nauchnyi informatsionnyi sbornik, 2008, no. 7, pp. 61-64.
  11. Rodionov A.V., Pototskii M.V. Nauchnye chteniya po aviatsii, posvyashchennye pamyati N.E. Zhukovskogo, 2013, no. 1, pp. 25-29.
  12. Egorov A.A., Surkov D.A., Vasil’ev N.M. Avtomatizatsiya i IT v energetike, 2016, no. 12 (89), pp. 42-47.
  13. Tersin V.V. Radiotekhnicheskie i telekommunikatsionnye sistemy, 2020, no. 4 (40), pp. 23-32.
  14. Korovin A.V., Savin D.I. XXVI Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Radiolokatsiya, navigatsiya, svyaz’»: sbornik trudov. Voronezh, VGU, 2020, pp. 249-253.
  15. Kiryushkin V.V., Korovin A.V., Savin D.I. Radiotekhnika, 2021, vol. 85, no. 6, pp. 127-140.
  16. Kostin A.A., Kostin V.A., Gubenko M.L., Sosnovskii A.V., Osadchik A.A. Radiotekhnika, 2022, vol. 86, no. 1, pp. 5-10.
  17. Stepanov O.A. Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Ch. 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the theory of estimation with applications to the tasks of processing navigation information. Part 1. Introduction to the theory of estimation). Saint Petersburg, GNTs RF OAO "Kontsern «TsNII «Elektropribor», 2010, 509 p.
  18. Savin D.I., Korovin A.V., Nikolenko D.A., Parshukov N.V. Programma opredeleniya koordinat nazemnykh ob"ektov s BLA uglomerno-dal’nomernym metodom. Svidetel’stvo o registratsii programmy dlya EVM 2020665604, 27.11.2020. (Program for determining the coordinates of ground objects with UAV angle-rangefinder method. Certificate of registration of the computer program 2020665604), 11.27.2020.
  19. Savin D.I., Korovin A.V., Nikolenko D.A., Parshukov N.V. Programma opredeleniya koordinat nazemnykh ob"ektov s BLA integral’nym dal’nomernym metodom. Svidetel’stvo o registratsii programmy dlya EVM 2020665640, 27.11.2020. (Program for determining the coordinates of ground objects with UAV integral rangefinder method. Certificate of registration of the computer program 2020665640), 27.11.2020.
  20. Ermakov P.G., Gogolev A.A. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167100. DOI: 10.34759/trd-2022-124-17

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход