Circuit design methodology for an integrating pendulum accelerometer


DOI: 10.34759/trd-2023-128-18

Аuthors

Vatutin M. A.*, Klyuchnikov A. I., Petrov D. G., Sudar Y. M.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The task of navigation consists in determining the true parameters of the of the aircraft center of mass motion and allows determining such navigation parameters as the linear coordinates of the place, as well as the magnitude and direction of the flight velocity vector in the selected coordinate system. The acceleration value being obtained from the accelerometer must be integrated twice to determine the linear coordinate. The pendulum positional accelerometer is convenient to be employed for the integrating mode of its operation. It is convenient to employ in the available accelerometer the measured acceleration integrating mode rather than the measuring mode itself for obtaining the first integral of the apparent acceleration being measured. For this purpose, an integrating capacitor with signal conversion circuits and periodic reset of the accumulated voltage is usually included in the feedback circuit.

The article considers schematic solutions in the electrical circuit of the signal conversion device of a positional pendulum accelerometer for obtaining an integrating mode of its operation. The converting device circuit is based on the self-oscillating ramp generator with controlled input, which consist of two basic parts, namely integrator and Shmitt trigger. The output signal of the ramp generator is a time interval. Accelerometer connection to the ramp generator allows forming on its output a signal in the form of relative time interval change proportional to the apparent acceleration integral, i.e. the apparent velocity.

Characteristics analysis of the accelerometers applied in the state-of-the-art technology reveals that at maximum input exposure, the current value of the torque sensor takes values in the tens of milliamps, depending on the specific type of accelerometer and the measurement range. For the electronic circuit of the integrating accelerometer with ramp generator, this means that the operational amplifiers of the ramp generator, actually consume currents of tens of milliamps throughout the time to ensure the circuit operation. The article considered schematic solutions for ramp generator connecting the accelerometer, which significantly reduce the current consumed by the ramp generator while operation, namely buffer amplifier; electronic current divider, and connection via a current sensor.

A technique for schematic design of the integrating pendulum accelerometer has been developed.

Keywords:

accelerometer, integrating accelerometer, apparent velocity, ramp function generator, current mirror, voltage-current converter

References

  1. Solov’ev V.I. Shabalov P.G. Inertsial’nye navigatsionnye sistemy (Inertial navigation systems), Samara, Izd-vo SGAU, 2011, 72 p.
  2. Kargu L.I. Izmeritel’nye ustroistva letatel’nykh apparatov (Measuring devices of aircraft), Moscow, Mashinostroenie, 1988, 256 p.
  3. Raspopov V.Ya. Mikrosistemnaya avionika (Microsystem avionics), Tula, Grif i K, 2010, 248 p.
  4. Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system (Fundamentals of construction of free-form inertial navigation systems), Saint Petersburg, Kontsern «TsNII «Elektropribor», 2009, 280 p.
  5. Kornilov A.V., Ko+rchagin K.S., Losev V.V. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156235. DOI: 10.34759/TRD-2021-117-09
  6. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: https://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  7. Raspopov V.Ya. Mikromekhanicheskie pribory (Micromechanical devices), Moscow, Mashinostroenie, 2007, 400 p.
  8. Dubovskoi V.B., Kislenko K.V., Pshenyanik V.G. Izvestiya VUZov. Priborostroenie. 2018, vol. 61, no. 7, pp. 590-595. DOI: 10.17586/0021-3454-2018-61-7-590-595
  9. Skorobogatov V.V. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2016, no. 10, pp. 17-29.
  10. Kalikhman D.M., Kalikhman L.Ya., Skorobogatov V.V., Deputatova E.A., Nikolaenko A.Yu., Gnusarev D.S. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no. 8, pp. 83-107.
  11. Prokhortsov A.V., Minina O.V. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2019, no. 10, pp. 301-305.
  12. Buyankin M.P., Vatutin M.A., Klyuchnikov A.I. Vestnik Rossiiskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie, 2020, no. 1, pp. 55-59. DOI: 10.25586/RNU.V9187.20.01.P.055
  13. Volkov V.L. Trudy NGTU im. R.S.Alekseeva, 2011, no. 2 (87), pp. 288.
  14. Volovich G.I. Skhemotekhnika analogovykh i analogo-tsifrovykh elektronnykh ustroistv (Circuitry of analog and analog-digital electronic devices), Moscow, Dodeka-XXI, 2005, 528 p.
  15. Tittse U., Shenk K. Poluprovodnikovaya skhemotekhnika (Semiconductor circuitry) vol. 1,2. Moscow, Dodeka-XXI, 2008, 942 p.
  16. Korn T., Korn G. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of Mathematics for scientists and engineers), Moscow, Mashinostroenie, 1978, 831 p.
  17. Averbuh V.D. et al. Operatsionnye usiliteli i komparatory. Spravochnik. Tom 12. (Operational amplifiers and comparators. Vol. 12), Moscow, Dodeka-XXI, 2001, p.
  18. Karter R., Manchini R. Operatsionnye usiliteli dlya vsekh (Operational amplifiers for everyone), Moscow, DMK Press, 2016, 528 p.
  19. Besekerskii V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya (Theory of automatic control systems), Moscow, Nauka, 1975, 767 p.
  20. Linden T. Kharrison. Istochniki opornogo napryazheniya i toka (Sources of reference voltage and current), Moscow, DMK Press, 2015, 576 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход