Application of the intelligent diagnostic system of information-converting aviation systems of integrated avionics under external disturbing influences
DOI: 10.34759/trd-2023-128-20
Аuthors
*, **, ***Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia
*e-mail: bukirev@inbox.ru
**e-mail: savaau@mail.ru
***e-mail: yatsechko@list.ru
Abstract
The problem of low depth of search for the place of failure by modern on-board automated control systems of aviation equipment, which negatively affects the intensity of recovery and combat readiness, is considered. The emerging need for operational diagnostics of the technical condition of information-converting aviation systems is a consequence of the increasing binding of a large number of systems to digital support and control, and the relegation of analog systems of modern avionics to the background. The need to diagnose the technical condition in real time, as well as the possibility of diagnosing systems on the ground, as well as during flights to perform special tasks, is an urgent problem, existing and proven practice, as well as data from enterprises that operate aviation equipment .The paper studies a model of an intelligent diagnostic system of information-converting aviation systems of integrated avionics, operating under external disturbances, with an assessment of the quality of adaptation of an artificial neural network to limiting external disturbances, in order to solve the problem of improving the efficiency of technical diagnostics by the criterion of minimizing the time of diagnosis and increasing the probability of timely departure of an aircraft to perform special tasks. The stability of the functioning of the model of an intelligent diagnostic system to external disturbing influences is substantiated by simulating the above process in the Simulink package of the MATLAB programming environment. The paper outlines the basic principles of the approach to building an intelligent diagnostic system for information-converting aviation systems of integrated modular avionics on-board equipment using artificial neural networks. Solving the problem of creating a model of an intelligent diagnostic system will make it possible to achieve the goal of moving to the creation of new diagnostic principles incorporated into modern on-board automated control tools.
Keywords:
intelligent diagnostic system, artificial neural networks, integrated modular avionics, controlReferences
- Kol’tsov Yu.V., Dobychina E.M. Uspekhi sovremennoi radioelektroniki, 2019, no. 8, pp. 29-45. DOI: 10.18127/j20700784-201908-03
- Kol’tsov Yu.V., Dobychina E.M. Uspekhi sovremennoi radioelektroniki, 2020, no. 3, pp. 47-54. DOI: 10.18127/j20700784-202003-06
- Sytnikov I.A., Kulikova T.A., Kulikov M.V. XI Mezhdunarodnaya nauchno-prakticheskaya konferentsiya molodykh uchenykh, posvyashchennaya 60-oi godovshchine poleta Yu.A. Gagarina v kosmos: sbornik nauchnykh statei. Krasnodar, Izdatel’skii Dom «Yug», 2021, pp. 340-343.
- Bocharov A.S., Loktikov A.Yu., Sharov I.V., Shipilov A.A. Materialy V Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Virtual’noe modelirovanie, prototipirovanie i promyshlennyi dizain». Tambov, Tambovskii gosudarstvennyi tekhnicheskii universitet, 2018, pp. 154-160.
- Esev A.A. Metodicheskoe obespechenie nazemnykh ispytanii boevykh vertoletov, oborudovannykh ochkami nochnogo videniya (Methodological support for ground testing of combat helicopters equipped with night vision goggles): dissertation abstract. Moscow, 2010, 22 p.
- Stupakov V.Ya., Shapkin S.F. Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii «Aktual’nye aspekty razvitiya vozdushnogo transporta» Aviatrans-2018. — Rostov-na-Donu, OOO «Fond nauki i obrazovaniya», 2018, pp. 757-762.
- Savchenko A.Yu., Bukirev A.S. V Mezhvuzovskaya NPK kursantov i slushatelei «Molodezhnye chteniya pamyati Yu.A. Gagarina»: sbornik statei. Voronezh, VUNTs VVS «VVA», 2018, pp. 163-166.
- Burakov M.V. Neironnye seti i neirokontrollery (Neural networks and neurocontrollers), Saint Petersburg, GUAP, 2013, 284 p.
- Bukirev A.S. Programma diagnostiki tekhnicheskogo sostoyaniya aviatsionnykh sistem na osnove intellektual’noi diagnosticheskoi sistemy. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM 2019618017 RF, 26.06.2019 (The program for diagnosing the technical condition of aviation systems based on an intelligent diagnostic system. Certificate of state registration of the computer program 2019618017 SU, 26.06. 2019.
- Zharinov O.O., Vidin B.V., Shek-Iovsepyants R.A. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki, 2010, no. 4 (68), pp. 21-27.
- Nikolaeva S.G. Neironnye seti. Realizatsiya v Matlab (Neural networks. Implementation in Matlab), Kazan’, Kazanskii gosudarstvennyi energeticheskii universitet, 2015, 92 p.
- Bukirev A.S. Patent RU 2778366 S1, 17.08.2022.
- Travin A.A., Kalashnikov E.A., Bakradze L.G. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170352. DOI: 10.34759/trd-2022-127-23
- Sokolov D.Yu. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165563. DOI: 10.34759/trd-2022-123-17
- Zheleznyakov A.O., Sidorchuk V.P., Podrezov S.N. Trudy MAI, 2022, no. 123. https://trudymai.ru/eng/published.php?ID=165538. DOI: 10.34759/trd-2022-123-26
- Klyachkin V.N., Karpunina I.N., Kuvaiskova Yu.E., Khoreva A.S. Nauchnyi vestnik UI GA, 2016, no. 8, pp. 158-161.
- Dobrodeev I.P. Povyshenie effektivnosti neirosetevykh modelei v sistemakh diagnostiki tekhnicheskogo sostoyaniya gazoturbinnykh dvigatelei na osnove funktsional’noi adaptatsii (Improving the efficiency of neural network models in systems for diagnosing the technical condition of gas turbine engines based on functional adaptation). Doctor’s thesis. Rybinsk, 2010, 218 p.
- Popov E.P., Vereikin A.A, Nasonov F.A. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161429. DOI: 10.34759/trd-2021-120-15
- Bukirev A.S. Model’ intellektual’noi diagnosticheskoi sistemy informatsionno-preobrazuyushchikh aviatsionnykh sistem kompleksov bortovogo oborudovaniya integrirovannoi avioniki v usloviyakh vneshnikh vozmushchayushchikh vozdeistvii. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM 2022667311 RF, 19.09.2022 (Model of an intelligent diagnostic system for information-converting aviation systems of onboard equipment complexes of integrated avionics under conditions of external disturbing influences. Certificate of state registration of the computer program 2022667311 SU, 19.09.2022).
- Interfeis magistral’nyi posledovatel’nyi sistemy elektronnykh moduleii, GOST R 52070-2003 (Main serial interface of the system of electronic modules, State Standard R 52070-2003), Moscow, Standarty, 2003.
Download