Simulation of strain waves evolution in the walls of coaxial annular and circular channels filled with viscous fluid and made from incompressible material with fractional physical nonlinearity


DOI: 10.34759/trd-2023-129-05

Аuthors

Bykova T. V.*, Mogilevich L. I.**, Evdokimova E. V.***, Popova E. V.****, Popova M. V.*****

Yuri Gagarin State Technical University of Saratov, 77, Politechnicheskaya str., Saratov, 410054, Russia

*e-mail: tbykova69@mail.ru
**e-mail: mogilevichli@gmail.com
***e-mail: eev2106@mail.ru
****e-mail: elizaveta.popova.97@bk.ru
*****e-mail: mari.popova.2004@internet.ru

Abstract

The article being presented develops approaches to mathematical modeling of nonlinear strain waves propagation in the continuous heterogeneous media. These models are up-to-date and scientifically significant for the prospective aerospace engineering due to the more-and-more increasing application of modern composite materials with significantly nonlinear physical and mechanical properties. The authors proposed a mathematical model for circular and annular channels completely filled with viscous fluids and formed by the two coaxial cylindrical shells. The shell material is considered incompressible and possessing the physical law with fractional degree nonlinearity, associating stresses, strains and strain intensity. Derivation of equations of the shell with fractional nonlinearity dynamics (Schamel nonlinearity) was performed to develop a model. The coupled hydroelasticity problem for the two coaxial cylindrical shells filled with viscous fluids was formulated. The fluid dynamics were considered within the framework of the Newtonian incompressible fluid model. Fluid motion in annular and circular channels is being studied as creeping one. The authors performed an asymptotic analysis of the hydroelasticity problem, and obtained a system of two nonlinear evolution equations generalizing the Schamel equation. It was demonstrated theoretically that in the considered statement, the presence of a viscous fluid in a circular channel has no effect on the nonlinear wave process in the shell-walls of the channel. The article proposes a new difference scheme for solving the obtained system of the two nonlinear equations based on application of the Grebner bases technique has been proposed. A series of computational experiments have been carried out, which revealed that the nonlinear strain waves in the walls of the considered channels are solitons.

Keywords:

mathematical modeling, nonlinear strain waves, coaxial shells, viscous fluid, fractional nonlinearity, incompressible material

References

  1. Klyuev V.V., Sosnin F.R., Rumyantsev S.V. et al. Nerazrushayushchii kontrol’. Rossiya. 1990-2000: spravochnik (Nondestructive testing. Russia. 1990-2000: handbook). Moscow, Mashinostroenie, 2001, 616 p.
  2. Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskii kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii (Acoustic Control of Equipment during Manufacturing and Operation), Moscow, Nauka, 2009, 280 p.
  3. Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuous media), Moscow, Fizmatlit, 2004, 472 p.
  4. Erofeev V.I., Klyueva N.V. Akusticheskii zhurnal, 2002, vol. 48, no. 6, pp. 725-740.
  5. Erofeev V.I., Kazhaev V.V. Vychislitel’naya mekhanika sploshnykh sred, 2017, vol. 10, no. 2, pp. 127-136. DOI: 10.7242/1999-6691/2017.10.2.11
  6. Erofeev V.I., Mal’khanov A.O., Morozov A.N. Trudy MAI, 2010, no. 40. URL: https://trudymai.ru/eng/published.php?ID=22860
  7. Erofeev V.I., Morozov A.N., Nikitina E.A. Trudy MAI, 2010, no. 40. URL: https://trudymai.ru/eng/published.php?ID=22861
  8. Lai T.T., Tarlakovskii D.V. Trudy MAI, 2012, no. 52. URL: https://trudymai.ru/eng/published.php?ID=29267
  9. Bochkarev A.V., Zemlyanukhin A.I., Mogilevich L.I. Akusticheskii zhurnal, 2017, vol. 63, no. 2, pp. 145-151. DOI: 10.7868/S0320791917020022
  10. Zemlyanukhin A.I., Andrianov I.V., Bochkarev A.V., Mogilevich L.I. The generalized Schamel equation in nonlinear wave dynamics of cylindrical shells, Nonlinear Dynamics, 2019, vol. 98 (1), pp. 185-194. DOI: 10.1007/s11071-019-05181-5
  11. Zemlyanukhin A.I., Bochkarev A.V., Andrianov I.V., Erofeev V.I. The Schamel-Ostrovsky equation in nonlinear wave dynamics of cylindrical shells, Journal of Sound and Vibration, 2021, vol. 491, pp. 115752. DOI: 10.1016/j.jsv.2020.115752
  12. Tarlakovskii D.V., Dang K.Z. Trudy MAI, 2014, no. 76. URL: https://trudymai.ru/eng/published.php?ID=49960
  13. Koren’kov A.N. Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 2019, vol. 6, no. 1, pp. 131-143.
  14. Blinkova A.Yu., Ivanov S.V., Kuznetsova E.L., Mogilevich L.I. Trudy MAI, 2014, no. 78, URL: https://trudymai.ru/eng/published.php?ID=53486
  15. Bykova T.V., Evdokimova E.V., Mogilevich L.I., Popov V.S. Trudy MAI, 2020, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115113. DOI: 10.34759/trd-2020-111-3
  16. Mogilevich L., Ivanov S. Waves in two coaxial elastic cubically nonlinear shells with structural damping and viscous fluid between them, Symmetry, 2020, vol. 12 (3), pp. 335. DOI: 10.3390/sym12030335
  17. Vol’mir A.S. Nelineinaya dinamika plastinok i obolochek (Nonlinear dynamics of plates and shells: studies. Manual for undergraduate and graduate), Moscow, Nauka, 1972, 432 p.
  18. Kauderer H. Nichtlineare Mechanik, Berlin, Springer, 1958, 684 p.
  19. Singh V.K., Bansal G., Agarwal M., Negi P. Experimental determination of mechanical and physical properties of almond shell particles filled biocomposite in modified epoxy resin, Journal Material Sciences & Engineering, 2016, vol. 5, no. 3, pp. 1000246. DOI: 10.4172/2169-0022.1000246
  20. Tournat V., Zaitsev V., Gusev V., Nazarov V., Bequin P., Castagnede B. Physical Review Letters, 2004, vol. 92, no. 8, pp. 085502. DOI: 10.1103/physrevlett.92.085502
  21. Il’yushin A.A. Mekhanika sploshnoi sredy (Continuum mechanics), Moscow, Izd-vo MGU, 1990, 310 p.
  22. Loitsyanskii L.G. Mekhanika zhidkosti i gaza. (Mechanics of Liquids and Gases), Moscow, Drofa, 2003, 840 p.
  23. Nayfeh A.H. Perturbation methods, New York, Wiley, 1973, 425 p.
  24. Gerdt V.P., Blinkov Yu.A., Mozzhilkin V.V. Gröbner bases and generation of difference schemes for partial differential equations, Symmetry, Integrability and Geometry: Methods and Applications, 2006, vol. 2, pp. 051. DOI: 10.3842/SIGMA.2006.051

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход