Optimization of the flow around thick airfoils to improve their aerodynamic characteristics

DOI: 10.34759/trd-2023-129-11


Usachov A. E.1*, Isayev S. A.2**, Sapunov O. A.3***, Usachov S. A.3****

1. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia
2. Saint-Petersburg State University of Civil Aviation, 38, Pilotov str., St. Petersburg, 196210, Russia
3. Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), Zhukovsky, Moscow region, Russia

*e-mail: usachov_a@mail.ru
**e-mail: isaev3612@yandex.ru
***e-mail: oleg-sapunov96@mail.ru
****e-mail: sergeyech@mail.ru


The problem of optimizing aerodynamic thick airfoils is relevant for the development of non-traditional aircraft, such as a flying wing [1], a hybrid airship [2], etc. Modern numerical simulation methods make it possible to optimize the aerodynamic airfoil shape according to a given objective function. In this study, the task was to reduce the aerodynamic drag of the airfoil with its largest area, that is, in the three-dimensional case of maintaining maximum internal volumes. The commercial ANSYS software package (license number 501024) was used for optimization. Numerical modeling of the airfoil flow was carried out on the basis of solving the complete Navier-Stokes equations, averaged over Reynolds (RANS—Reynolds-Averaged-Navier-Stokes) and closed using Menter’s two-parameter SST turbulence model. The shape of the profile is changed by varying a number of geometric parameters on the upper surface of the profile. Half of a circular cylinder with rounded sharp edges was chosen as the initial profile shape. By optimizing the profile shape using numerical simulation methods, its aerodynamic quality has been significantly increased.

Numerical simulation of a two-dimensional turbulent airfoil flow was carried out using the Fluent CFD software package included in the ANSYS computing environment. The Fluent package contains a fairly wide range of tools for numerical simulation of turbulent flows, however, based on the experience of previous studies [3,4,11] and known literature [11-20], the main methods for calculating the turbulent flow around a profile were determined. The control volume method was used to discretize differential equations [3,4,11,20]. Using the semi-implicit SIMPLE method [20], the pressure was determined, the second-order upwind scheme QUICK was used to approximate the flow terms on the edge of the control volume, and the second-order upwind scheme was used for the turbulence parameters.

Based on previous studies [3-5], the flow around a thick airfoil with a separation zone has been improved by using vortex cells. The application of the vortex cell method is based on the placement of oval-shaped cavities in the area of the separation point from the upper surface of the profile, in which a circulation flow is organized in one way or another.


Numerical simulation, optimization, vortex cell, turbulence


  1. Konyukhov I.K. Trudy MAI, 2018, no. 99. URL: https://trudymai.ru/eng/published.php?ID=91801
  2. Isaev S.A., Mitrofovich V.V., Sustin S.A., Usachov A.E. XXXI nauchno-tekhnicheskaya konferentsiya po aerodinamike: tezisy dokladov. Zhukovskii, Izd-vo TsAGI, 2020, pp. 114-115.
  3. Ermishin A.V., Isaev S.A. Upravlenie obtekaniem tel s vikhrevymi yacheikami v prilozhenii k letatel’nym apparatam integral’noi komponovki. Chislennoe i fizicheskoe modelirovanie (Flow control around bodies with vortex cells as applied to integrated aircraft. Numerical and physical modeling), Moscow, MGU, 2003, 360 p.
  4. Isaev S.A. et al. Aerodinamika utolshchennykh tel s vikhrevymi yacheikami. Chislennoe i fizicheskoe modelirovanie (Aerodynamics of thickened bodies with vortex cells. Numerical and Physical Modeling), Saint Petersburg, Izd-vo Politekhnicheskogo universiteta, 2016, — 215 p.
  5. Donelli R., Chernyshenko S., Iannelli P., Iollo A., Zannetti L. Flow models for a vortex cell, AIAA Paper, 2009, vol. 2 (47), pp. 451–467.
  6. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Nauka, 1987, 736 p.
  7. Hirsh C. Numerical computation of internal and external flows, N.Y, John Wiley and Sons, 1990, 691 p.
  8. Menter F.R. Zonal two equation k- turbulence models for aerodynamic flow, 4th Fluid Dynamics Conference, Orlando, Florida, July 6-9, 1993.
  9. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model, Turbulence, Heat and Mass Transfer 4, Begell House, Inc. 2003.
  10. Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., Volker S. A Correlation Based Transition Model Using Local Variables. Part 1: Model Formulation, Turbo Expo, 2004, DOI: 10.1115/gt2004-53452
  11. Isaev S.A., Baranov P.A., Usachov A.E. Mnogoblochnye vychislitel’nye tekhnologii v pakete VP2/3 po aerotermodinamike (Multiblock computing technologies in the VP2/3 package on aerothermodynamics), Saarbryuken, LAMBERT Academic Publishing, 2013, 316 p.
  12. Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics, Berlin, Springer Verlag, 2002, 431 p.
  13. Reviznikov D.L., Sposobin A.V., Sukharev T.Y. Numerical simulation of the flow around a blunt body in supersonic polydisperse stream, High Temperature, 2017, vol. 55 (3), pp. 400-406. DOI: 10.1134/S0018151X17010187
  14. Yaremenko A.V., Nikitchenko Yu.A., Popov S.A. Trudy MAI, 2013, no. 66. URL: https://trudymai.ru/eng/published.php?ID=40261
  15. Dervieux A., Désedéri J.A. Compressible Flow Solvers using Unstructured Grid. Rapport INRIA, 1992, no. 1732.
  16. Roe L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, Journal of Computatitional Physysics, 1981, vol. 43(2), pp. 357-372.
  17. Osher S., Solomon F. Upwind difference schemes for hyperbolic systems of conservation laws, Mathematics of Computation, 1982, vol. 38, pp. 339. DOI:10.2307/2007275
  18. Kornev S.V., Pimenov I.A. Trudy MAI, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165488. DOI: 10.34759/trd-2022-123-07.
  19. Kornev S.V., Artamonova L.G. Trudy MAI, no. 61. URL: https://trudymai.ru/eng/published.php?ID=35639
  20. Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti (Numerical methods for solving problems of heat transfer and fluid dynamics), Moscow, Energoatomizdat, 1984, 152 p.
  21. Krasil’shchikov. P.P. Prakticheskaya aerodinamika kryla (Practical Wing Aerodynamics), Moscow, b. i., 1973, 448 p.


mai.ru — informational site MAI

Copyright © 2000-2024 by MAI