Investigation of noise immunity of signal receivers with discrete phase modulation in the conditions of interference with angular modulation and noise


DOI: 10.34759/trd-2023-129-16

Аuthors

Parshutkin A. V.*, Buchinsky D. I.*, Komlyk D. A.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The article deals with the noise immunity study of the coherent quadrature receivers employing signals with discrete phase modulation, and considers the impact of an additive mixture of white Gaussian noise and angle-modulated unintentional interference during the BPSK and QPSK signals reception. Spectrum bandwidth of the interference with angular modulation and its center frequency match spectrum bandwidth and center frequency of the useful signal. The bit error rate was used as quality indicator of the receiver’s functioning. The article presents an analytical study of the bit error rate dependence on the ratio of the useful signal power to the powers affecting the receiver of unintentional noise with angular modulation and white Gaussian noise. The association of the obtained expressions with the known expressions describing the effect of separately white Gaussian noise and unintentional interference with angular modulation on a coherent signal receiver with discrete phase modulation is adduced. The article explains how these expressions may be obtained from those obtained, by way of the passage to the limit. The authors demonstrate with the obtained expressions that at the certain powers of unintentional interference significant change of the bit error rate dependence on the signal-noise ratio is possible. The obtained analytical dependences of the bit error rate while receiving both BPSK and QPSK signal against the background of unintentional interference and white Gaussian noise may be applied to assess the electromagnetic compatibility of communication systems using discrete phase modulation signals.

Keywords:

noise immunity, angle-modulated noise, electromagnetic compatibility, bit error probability, BPSK, QPSK

References

  1. Kazak P.G., Shevtsov V.A. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158239. DOI 10.34759/trd-2021-118-06
  2. Shevtsov V.A., Borodin V.V., Krylov M.A. Trudy MAI, 2016, no. 85. URL: http://trudymai.ru/eng/published.php?ID=66417
  3. Gurevich O.S., Kessel’man M.G., Trofimov A.S., Chernyshov V.I. Trudy MAI, 2017, no. 94. URL: http://trudymai.ru/eng/published.php?ID=81143
  4. Bakhtin A.A., Omel’yanchuk E.V., Semenova A.Yu. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85828
  5. Kulikov G.V., Dang S.Kh. Zhurnal radioelektroniki, 2021, no. 11. DOI 10.30898/1684-1719.2021.11.7
  6. Mal’tsev G.N., Travkin V.S. Informatsionno-upravlyayushchie sistemy, 2006, no. 5, pp. 32–42.
  7. Kulikov G.V., Lelyukh A.A., Grachenko E.N. Radiotekhnika i elektronika, 2020, vol. 65, no. 8, pp. 804-808. DOI 10.31857/S0033849420070074
  8. Ageev F.I., Voznyuk V.V., Khudik M.Yu. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158242. DOI 10.34759/trd-2021-118-08
  9. Boyarshinov M.A., Zykin A.A. XIII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Priborostroenie v XXI veke — 2017. Integratsiya nauki, obrazovaniya i proizvodstva»: sbornik trudov. Izhevsk, Izhevskii gosudarstvennyi tekhnicheskii universitet im. M.T. Kalashnikova, 2018, pp. 533-539.
  10. Parshutkin A.V., Buchinskii D.I. Informatika i avtomatizatsiya, 2020, vol. 19, no. 5, pp. 967-990. DOI: 10.15622/ia.2020.19.5.3
  11. Ageev F.I., Vorona M.S., Zvonarev V.V., Popov A.S. Radiotekhnika, 2018, no. 5, pp. 92-99.
  12. Dovbnya V.G., Koptev D.S., Babanin I.G. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel’naya tekhnika, informatika. Meditsinskoe priborostroenie, 2020, vol. 10, no. 1, pp. 21-35.
  13. Ahn, S. An, H. Oh, D. Yoon. Approximate Closed-form Expression for the Average BER of M-ary PSK with Gaussian-distributed Phase Error, 27th International Conference on Telecommunications (ICT), 2020, pp. 1-4. DOI: 10.1109/ICT49546.2020.9239556
  14. Lozhkin K.Yu., Prozhetorko S.S. Radiotekhnika, 2021, vol. 85, no. 3, pp. 37-48. DOI 10.18127/j00338486-202103-04
  15. Lozhkin K.Yu., Petrov A.V., Mironov V.A. et al. Radiotekhnika, 2020, vol. 84, no. 4 (8), pp. 27-35. DOI 10.18127/j00338486-202004(8)-03
  16. Zvonarev V.V., Popov A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104213
  17. Radzievskii V.G. Sovremennaya radioelektronnaya bor’ba. Voprosy metodologii (Modern electronic warfare. Methodology issues), Moscow, Radiotekhnika, 2006, 424 p.
  18. Baranov V.M., Maslakov P.A., Vorona S.G., Zazhivikhin I.M. Nelineinyi mir, 2018, vol. 16, no. 1, pp. 26-32.
  19. Kukk K.I. Sputnikovaya svyaz’: proshloe, nastoyashchee i budushchee (Satellite communications: past, present and future), Moscow, Goryachaya liniya — Telekom, 2019, 256 p.
  20. Tikhonov V.I. Statisticheskaya radiotekhnika (Statistical radio engineering), Moscow, Sovetskoe radio, 1966, 680 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход