Hardware-software complex for approvement methods of blind signal processing in radio systems


DOI: 10.34759/trd-2023-129-17

Аuthors

Tyapkin P. S.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: tjapkinp@yandex.ru

Abstract

This paper presents the results of the development of a hardware-software complex for testing blind signal processing methods in problem of increasing noise immunity in communication systems. The developed hardware and software complex includes two mixing circuits, a multichannel receiver and a personal computer. Digital receiver is based on the combination of software-defined radio systems (SDR) and consists of eight analog-to-digital converters, a field-programmable gate array (FPGA) circuit and a PCI-Express bus for transmitting data to a PC for processing and demodulation. The description and functional setting of the purpose of receiving and processing signals are involved in the work, as well as the results of verification of the hardware-software complex. The results of verification of practical methods for the use of blind signal processing capabilities for interference in radio information transmission systems are obtained. When checking, the maximum data transfer rate in the continuous bit stream mode was determined when processing a mixture of BPSK signals with pulse noise of various shapes. This transmission rate exceeds 905 bps. To increase the maximum speed, it is possible to use a more powerful PC, transfer the demodulator and blind signal processing algorithms to the FPGA.

Keywords:

blind signal processing, blind source separation, software-defined radio, FPGA, digital receiver, digital design, radio channel noise immunity improvement, impulse noise

References

  1. Dzhigan V.I. Adaptivnaya fil’tratsiya signalov: teoriya i algoritmy (Adaptive signal filtering: theory and algorithms), Moscow, Tekhnosfera, 2013, 528 p.
  2. Bernard W. Adaptive signal processing, New Jersey, Prentice-Hall, 1985, 472 p.
  3. Cichocki A., Amari S. Adaptive Blind Signal and Image Processing, John Wiley & Sons, Ltd, 2002, 586 p.
  4. Pierre Comon, Christian Jutten. Handbook of Blind Source Separation: Independent Component Analysis and applications, Academic Press, 2010, 831 p.
  5. Cano Estefania. et al. Musical Source Separation: An Introduction, IEEE Signal Processing Magazine, 2019, no. 36, pp. 31-40. DOI:10.1109/MSP.2018.2874719
  6. Liu K.H., Dragoset W.H. Blind-source separation of seismic signals based on information maximization, Geophysics, 2013, vol. 4, no. 78. DOI:10.1190/GEO2012-0136.1
  7. Fitzgibbon S. P. et al. Removal of EEG Noise and Artifact Using Blind Source Separation, Journal of Clinical Neurophysiology, 2007. pp. 232-243. DOI:10.1097/WNP.0b013e3180556926
  8. Xizhi S. Blind Signal Processing. Theory and Practice, Shanghai: Springer, 2011, 368 p.
  9. Haykin Simon. Neural Networks. A comprehensive foundation. Prentice Hall PTR, 2004.
  10. Tyapkin P.S., Vazhenin N.A. Applying Blind Signal Processing Methods in Data-Transmission Systems, 2021 Systems of Signals Generating and Processing in the Field of on Board Communications, March 2021. DOI:10.1109/IEEECONF51389.2021.9416105
  11. Belouchrani Adel. et al. A Blind Source Separation Technique Using Second-Order Statistics, IEEE Transactions on Signal Processing, 1997, no. 45, pp. 434-444. DOI: 10.1109/78.554307
  12. Tyapkin P.S. Gagarinskie chteniya −2018: tezisy dokladov. Moscow, Izd-vo MAI, 2018, pp. 222-223.
  13. Ulversoy T. Software Defined Radio: Challenges and Opportunities, IEEE Communications Surveys & Tutorials, 2010, no. 12, pp. 531-550. DOI:10.1109/SURV.2010.032910.00019
  14. Manokhin A.E. Metody slepogo podavleniya pomekh pri obrabotke poleznykh signalov (Methods of blind interference suppression in processing useful signals). Ekaterinburg, Izd-vo Ural’skogo universiteta, 2021, 204 p.
  15. Tikhonov V.I. Statisticheskaya radiotekhnika (Statistical radio engineering), Moscow, Sovetskoe Radio, 1966, 680 p.
  16. Tyapkin P.S. Vazhenin N.A. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171397. DOI: 10.34759/trd-2023-128-13
  17. Ganesh R. Naik. Independent Component Analysis for Audio and Biosignal Applications, INTECH, Croatia, 2012, 356 p.
  18. James V. Stone. Independent Component Analysis. A Tutorial Introduction. A Bradford Book. The MIT Press, Cambridge, Massachusetts. 2004. 213 p.
  19. Zvonarev V.V., Karabel’nikov I.A., Popov A.S. Trudy MAI, 2022, no. 124. URL: https://trudymai.ru/eng/published.php?ID=167068. DOI: 10.34759/trd-2022-124-13
  20. Maklashov V.A. Piganov M.N. Trudy MAI, 2020, no. 113. URL: https://trudymai.ru/eng/published.php?ID=118081. DOI: 10.34759/trd-2020-113-07

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход