Optimization of the automatic control system for the maximum power point for a wind-solar generating plant with energy storage


DOI: 10.34759/trd-2023-129-24

Аuthors

AbdAli L. M.1*, Yakimovich B. A.1**, Syaktereva V. V.2***, Kuvshinov V. V.1****, Morozova N. V.3*****

1. Sevastopol State Technical University, Sevastopol, Russia
2. Kalashnikov Izhevsk State Technical University, 7, Studencheskaya str., Izhevsk, 426069, Russia
3. Russian Medical Academy of Continuous Professional Education, Moscow, Russia

*e-mail: laith_2210@yahoo.com
**e-mail: yakimovich52@gmail.com
***e-mail: syaktereva_vika@mail.ru
****e-mail: кuvshinov.vladimir@gmail.com
*****e-mail: innat.m@mail.ru

Abstract

Direct solar energy conversion systems based on semiconductor photovoltaic cells have been employed for decades for aerospace technology and ground-based consumers. The article presents the developed information and control system for combined electric energy generating installation by solar and wind energy conversion. A combined system, which employs two or more stable energy sources, is known as a hybrid renewable energy system. It will facilitate uninterruptible energy generation and allow employing one source in the absence of the other, which is its irrefutable advantage. The study proposes the hybrid energy conversion positioning, which includes photovoltaic panels, wind power generator and batteries. The presented work performed control system optimization of the proposed hybrid wind-solar system, which enhanced significantly efficiency of its application and performance reliability. The model of photovoltaic and wind output power, as well as the model of the battery charging and discharging were obtained by studying the output characteristics of the generating power station. Parameters such as the average annual net profit as a target function and region and area characteristics, planned scale, complementary properties, resources utilization factor and stability of the output as limitations were used while development. A model for the hybrid system of photovoltaic conversion, wind generation and energy storage was constructed employing the proposed method. The results of the experiment demonstrate the proposed approach validity and robustness. The emissions trading revenues inclusion makes the model more accurate. The ideal result is more useful as well. As the article shows, the solar photovoltaic panels distribution affects the overall power generation of the hybrid system. It employs a solar panel connected with a hybrid controller and a wind turbine. The results revealed that continuous power generation was possible when the solar panel was connected with the wind turbine, which improved its power output.

Keywords:

speckles, glazing, exit from sealing, non-destructive testing, defect, cabin

References

  1. Khare V., Nema S. and Baredar P. Solar-wind hybrid renewable energy system, Renewable and Sustainable Energy Reviews, 2016, vol. 58, pp. 23-33, URL: https://doi.org/10.1016/j.rser.2015.12.223
  2. Abo-Elyousr F.K., Abdelshafy A.M., Abdelaziz A.Y. TMMT-Based Particle Swarm and Cuckoo Search Algorithms for PV Systems. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, Springer, Cham, Switzerland, 2020, pp. 379-400. DOI:10.1007/978-3-030-05578-3_14
  3. Volkov A.S. Trudy MAI, 2023, no. 128. URL:https://trudymai.ru/eng/published.php?ID=171396. DOI: 10.34759/trd-2023-128-12
  4. Abdali L.M., Issa Kh.A., Al’-Maliki M.N., Kuvshinov V.V., Bekirov E.A. Stroitel’stvo i tekhnogennaya bezopasnost’, 2022, no. 25 (77), pp. 75-85.
  5. Ibragimov D.N., Berendakova A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169003. DOI: 10.34759/trd-2022-126-17
  6. Issa Kh.A., Abdali L.M., Yakimovich B.A., Kuvshinov V.V., Morozova N.V., Fedotikova M.V. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171405. DOI: 10.34759/trd-2023-128-17
  7. Senol M., Abbasoglu S., Kukrer O., Babatunde A. A guide in installing large-scale PV power plant for self-consumption mechanism, Solar Energy, 2016, vo1. 132, pp. 518-537. DOI: 10.1016/j.solener.2016.03.035
  8. Abdali L.M., Al’-Maliki M.N., Issa Kh.A., Yakimovich B.A., Kuvshinov V.V. Intellektual’nye sistemy v proizvodstve, 2022, vol. 20, no. 4, pp. 106–116. DOI: 10.22213/2410-9304-2022-4-106-116
  9. Sokolov N.L. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69701
  10. Mehrjerdi H. Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units, Renewable Energy, 2020, vol. 156, pp. 183-192. DOI: 10.1016/j.renene.2020.04.090
  11. Abd Ali L.M., Al-Rufaee F.M., Kuvshinov V.V. Study of Hybrid Wind — Solar Systems for the Iraq Energy Complex, Applied Solar Energy, 2020, vol. 56, pp. 284-290. URL: https://doi.org/10.3103/S0003701X20040027
  12. Amiry H. Design and implementation of a photovoltaic I-V curve tracer: Solar modules characterization under real operating conditions, Energy Conversion and Management, 2018, vol. 169, pp. 206-216. DOI:10.1016/j.enconman.2018.05.046
  13. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168189. DOI: 10.34759/trd-2022-125-17
  14. Ibrahim H. and Anani N. Variations of PV module parameters with irradiance and temperature, Energy Procedia, 2017, vol. 134, pp. 276-285. DOI:10.1016/j.egypro.2017.09.617
  15. Sachit M.S., Shafri H.Z.M., Abdullah A.F., Rafie A.S.M. Combining Re-Analyzed Climate Data and Landcover Products to Assess the Temporal Complementarity of Wind and Solar Resources in Iraq, Sustainability, 2021, vol. 14(1), pp. 388. DOI:10.3390/su14010388
  16. Al-Waeli, Ali AK, Kadhem A. Al-Asadi, Mariyam M. Fazleena. The impact of Iraq climate condition on the use of solar energy applications in Iraq, International Journal of Science and Engineering Investigations, 2017, no. 68, pp. 64-73.
  17. Yin O.W. and Babu B.C. Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions, Optik, 2018, vol. 169, pp. 48-61. DOI:10.1016/j.ijleo.2018.05.037
  18. Aurel Gontean, Septimiu Lica, Szilard Bularka, Roland Szabo, Dan Lascu. A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation, Energies, 2018, vol. 11, pp. 36. DOI:10.3390/en11010036
  19. Xuan Hieu Nguyen, Minh Phuong Nguyen. Mathematical modeling of photovoltaic cell/module/arrays with tags in Matlab/Simulink, Environmental Systems Research, 2015, vol. 4, pp. 24. DOI:10.1186/s40068-015-0047-9
  20. Al-Kayiem H.H., Mohammad S.T. Potential of renewable energy resources with an emphasis on solar power in Iraq, Resources, 2019, vol. 8 (1), pp. 42. DOI 10.3390/resources8010042
  21. Li H., Yang D., Su W. An overall distribution particle swarm optimization mppt algorithm for photovoltaic system under partial shading, IEEE Transactions on Industrial Electronics, 2018, vol. 1, no. 1, pp. 265-275. DOI: 10.1109/TIE.2018.2829668
  22. Cheboxarov V.V. An Offshore Wind-Power-Based Water Desalination Complex as a Response to an Emergency in Water Supply to Northern Crimea, Applied Solar Energy, 2019, vol. 55, no. 4, pp. 260-264. URL: https://doi.org/10.3103/S0003701X19040030.
  23. Fares D., Fathi M., Mekhilef S. Performance evaluation of metaheuristic techniques for optimal sizing of a stand-alone hybrid PV/wind/battery system, Applied Energy, 2022, vol. 117823, pp. 305-312. DOI: 10.1016/j.apenergy.2021.117823
  24. Somwanshi D. and Chaturvedi A. Design and Optimization of a Grid-Connected Hybrid Solar Photovoltaic- Wind Generation System for an Institutional Block, International Conference on Artificial Intelligence: Advances and Applications, 2020, pp. 319-326. DOI:10.1007/978-981-15-1059-5_36
  25. Hasirci, Habip Yusuf, and Ahmet Mete Vural. Modeling and Simulation of PMSG based Wind-Solar Energy Based Hybrid Energy Conversion System, Global Energy Conference (GEC), 2022, pp. 223-228. DOI: 10.1109/GEC55014.2022.9987169.
  26. Abdali L.M., Al’-Maliki M.N., Ali K.A., Yakimovich B.A., Korovkin N.V., Kuvshinov V.V., Solomennikova S.I. Vestnik IzhGTU imeni M. T. Kalashnikova, 2022, vol. 25, no 3, pp. 82-91. DOI: 10.22213/2413-1172-2022-3-82-91
  27. Vasant Ligade Gitanjali, Vijaya Pawar. Solar-wind hybrid energy system using MPPT, International conference on intelligent computing and control systems, 2017, pp. 595-597. DOI: 10.1109/ICCONS.2017.8250531
  28. Kumar G.A. Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system, International Journal of Energy and Environmental Engineering, 2022, vol. 13 (1), pp. 77-103. URL: https://doi.org/10.1007/s40095-021-00399-9
  29. Yadav A.S., Sanjay Sinha. Solar-Wind Based Hybrid Energy System: Modeling and Simulation, 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), 2021, pp. 586-570. DOI: 10.1109/RDCAPE52977.2021.9633590

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход