Comparison of the effectiveness of various methods for controlling the energy parameters of photovoltaic systems


DOI: 10.34759/trd-2023-128-17

Аuthors

Issa H. A.1*, AbdAli L. M.1**, Yakimovich B. A.1***, Kuvshinov V. V.1****, Morozova N. V.2*****, Fedotikova M. V.3******

1. Sevastopol State Technical University, Sevastopol, Russia
2. Russian Medical Academy of Continuous Professional Education, Moscow, Russia
3. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: hassamal817@gmail.com
**e-mail: laith_2210@yahoo.com
***e-mail: yakimovich52@gmail.com
****e-mail: кuvshinov.vladimir@gmail.com
*****e-mail: innat.m@mail.ru
******e-mail: marie.rommy@yandex.ru

Abstract

The silicon photovoltaic converters application for power supply systems requires a significant energy-conversion efficiency. However, solar batteries without effective control systems and automatics do not comply with the technological requirements place on them. All that significantly reduces the efficiency of the electrical energy final generation and is not able ensuring power supply to auxiliary equipment of such complex systems as space and aviation equipment, communication power systems and other high-tech complexes. The requirements for the energy supply of high-tech facilities with solar power supply systems may be increased by employing new methods for control systems of solar power generation complexes. The peak power point tracking (MPT) method is often used to increase the amount of electrical energy that can be obtained from photovoltaic panels under certain conditions, as well as to improve the performance of solar panels. The photovoltaic system efficiency lies in the maximum power transfer to the load, hence is the interest in implementing more efficient TMM methods in terms of accuracy and speed. In this context, two TMM methods are applied to the photovoltaic DC converter, namely Fuzzy Logic Control (FLC) and Perturbation and Observation (P&O). A model for the boost converter is developed in MATLAB/Simulink to test and analyze the performance of the controllers. In the presented work, two controllers were tested under different irradiation conditions from the viewpoint of response time and efficiency. The results of this work prove that both control methods allow perfect tracking of the TMM with a slight FLC advantage over classical P&O. The proposed methods for the solar generation systems control allow significant operation efficiency rising of the whole system and increasing the final electric power component. This component is necessary for the qualitative provision of high-tech objects and complex electric power systems, particularly, such as aviation and space engineering, satellite and spacecraft communication systems, as well as energy-conversion efficiency increasing at the other objects, located on the ground and employing photoelectric generation systems.

Keywords:

photovoltaic converter, modeling and simulation, maximum power point (MPPT) tracking, photovoltaic (PV) module, single diode model

References

  1. Javed K., Ashfaq H., Singh R. A new simple MPPT algorithm to track MPP under partial shading for solar photovoltaic systems, International Journal of Green Energy, 2020, vol. 17, pp. 48-61. DOI:10.1080/15435075.2019.1686001
  2. Pathak P.K., Padmanaban S., Yadav A.K., Alvi P.A., Khan B. Modified incremental conductance MPPT algorithm for SPV‐based grid‐tied and stand‐alone systems, IET Generation, Transmission & Distribution, 2022, 16(4), pp.776-791. DOI:10.1049/gtd2.12328
  3. Sokolov N.L. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69701
  4. Shaw R.N., Walde P., Ghosh A. IOT based MPPT for performance improvement of solar PV arrays operating under partial shade dispersion, 9th Power India International Conference (PIICON), 2020, pp. 1-4. DOI:10.1109/PIICON49524.2020.9112952
  5. Abd Ali L.M., Al-Rufaee F.M., Kuvshinov V.V. et al. Study of Hybrid Wind—Solar Systems for the Iraq Energy Complex, Applied Solar Energy, 2020, vol. 56, no. 4, pp. 284–290. URL: https://doi.org/10.3103/S0003701X20040027
  6. Teplikova V.I., Sentsov A.A., Nenashev V.A., Polyakov V.B. Trudy MAI, 2022, no. 125. URL: https://trudymai.ru/eng/published.php?ID=168189. DOI: 10.34759/trd-2022-125-17
  7. Abdali L.M., Issa Kh.A., Al’-Maliki M.N., Kuvshinov V.V., Bekirov E.A. Stroitel’stvo i tekhnogennaya bezopasnost’, 2022, no. 25(77), pp. 75-85.
  8. Ibragimov D.N., Berendakova A.V. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=169003. DOI: 10.34759/trd-2022-126-17
  9. Yin O.W., Babu B.C. Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions, Optik — International Journal for Light and Electron Optics, 2018, vol. 169, pp. 48-61. DOI:10.1016/j.ijleo.2018.05.037
  10. Cheboxarov V.V., Lyamina, N.V. Some Results of a Study of Wave Energy Converters at Sevastopol State University, Applied Solar Energy, 2019, vol. 55, no. 4, pp. 256-259. URL: https://doi.org/10.3103/S0003701X19040029.
  11. Abo-Elyousr F.K., Abdelshafy A.M., Abdelaziz A.Y. MPPT-Based Particle Swarm and Cuckoo Search Algorithms for PV Systems. In Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems, Springer, Cham, Switzerland, 2020, pp. 379-400.
  12. Bhukya M.N., Kota V.R. A quick and effective MPPT scheme for solar power generation during dynamic weather and partial shaded conditions, Engineering Science and Technology an International Journal, 2019, vol. 22(3), pp. 869-884. DOI:10.1016/j.jestch.2019.01.015
  13. Abdali L.M., Al’-Maliki M.N., Ali K.A., Yakimovich B.A., Korovkin N.V., Kuvshinov V.V., Solomennikova S.I. Vestnik IzhGTU imeni M. T. Kalashnikova, 2022, vol. 25, no. 3, pp. 82-91. DOI: 10.22213/2413-1172-2022-3-82-91
  14. Aouchiche N., Aitcheikh M.S., Becherif M., Ebrahim M.A. AI-based global MPPT for partial shaded grid connected PV plant via MFO approach, Solar Energy, 2018, vol. 171, pp. 593–603. DOI:10.1016/j.solener.2018.06.109
  15. Pathy S., Subramani C., Sridhar R., Thentral T., Padmanaban S. Nature-inspired MPPT algorithms for partially shaded PV systems: A comparative study, Energies, 2019, vol. 12, pp. 1451. DOI:10.3390/en12081451
  16. Li, D. Yang, W. Su. An overall distribution particle swarm optimization mppt algorithm for photovoltaic system /under partial shading, IEEE Transactions on Industrial Electronics, 2018, vol. 1, no. 1, pp. 265–275. DOI:10.1109/TIE.2018.2829668
  17. Belkaid A., Colak I., Kayisli K. Implementation of a modified P&O-TMMT algorithm adapted for varying solar radiation conditions, Electrical Engineering, 2017, vol. 99, pp. 839–846. DOI: 10.1007/s00202-016-0457-3
  18. Abdali L.M., Al’-Maliki M.N., Issa Kh.A., Yakimovich B.A., Kuvshinov V.V. Intellektual’nye sistemy v proizvodstve, 2022, vol. 20, no. 4, pp. 106-116. DOI: 10.22213/2410-9304-2022-4-106-116.
  19. Khatib Tamer, Wilfried Elmenreich. Modeling of photovoltaic systems using Matlab: Simplified green codes. John Wiley & Sons, 2016, 240 p.
  20. Goncharov P.S., Kopeika A.L., Babin A.M. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168995. DOI: 10.34759/trd-2022-126-09
  21. Haddad Ahmad, Mohamad Ramadan, Mahmoud Khaled, Haitham S. Ramadan, Mohamed Becherif. Triple hybrid system coupling fuel cell with wind turbine and thermal solar system, International Journal of Hydrogen Energy, 2020, vol. 45, pp. 11484-11491. DOI:10.1016/j.ijhydene.2019.05.143
  22. Abdali L.M.A., Issa Kh.A.I., Al’-Maliki M.N.K., Yakimovich B.A., Kuvshinov V.V. Intellektual’nye sistemy v proizvodstve, 2022, vol. 20, no. 3, pp. 104-113. DOI: 10.22213/2410-9304-2022-3-104-113
  23. Pilakkat Deepthi, S. Kanthalakshmi. An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions, Solar Energy, 2019, vol. 178, pp. 37-47. DOI:10.1016/j.solener.2018.12.008
  24. Mitrofanov S.V., Baykasenov D.K., Suleev M.A. Simulation model of autonomous solar power plant with dual-axis solar tracker, 2018 International Ural Conference on Green Energy, 2018, pp. 90-96. DOI:10.1109/URALCON.2018.8544275
  25. Xia Qianxue, Suman Debnath, Phani R.V. Marthi, Shilpa Marti, Maryam Saeedifard. High-Fidelity Models and Fast EMT Simulation Algorithms for Isolated Multi-port Autonomous Reconfigurable Solar power plant (MARS), 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2021, pp. 1-7. DOI: 10.1109/PEDG51384.2021.9494179
  26. Müller Reiko, Jane Jean Kiam, Federico Mothes. Multiphysical simulation of a semi-autonomous solar powered high altitude pseudo-satellite, 2018 IEEE Aerospace Conference, 2018, pp. 1-16. DOI:10.1109/AERO.2018.8396531
  27. Layth M. Abd Ali, L M. Ali, Q.A., Klačková I., Issa H.A., Yakimovich, B.A., Kuvshimov V.V. Developing a thermal design for steam power plants by using concentrating solar power technologies for a clean environment, Acta Montanistica Slovaca, 2021, vol. 26 (4), pp. 773-783. DOI: https://doi.org/10.46544/AMS.v26i4.14
  28. Karamov D.N., Naumov I.V. Modeling a solar power plant with regard to changes in environmental parameters, Power Technology and Engineering, 2020, vol. 54, no. 4, pp. 548-554. DOI:10.1007/s10749-020-01249-0
  29. Mohammmad Sanan T., Hussain Al-Kayiem, Ayad K. Khlief, Mohammed A. Aurybi. Modeling and Performance Assessment of a Hypothetical Stand-Alone Parabolic Trough Solar Power Plant Supported by Climatic Measurements in Ipoh, Journal of Solar Energy Engineering, 2022, pp.1-31.
  30. Gordievsky E.M., Miroshnichenko A., Kulganatov A. Simulation Model of Solar Power Installation in Matlab Simulink Program, 2020 International Ural Conference on Electrical Power Engineering (UralCon), 2020, pp. 436-440. DOI:10.1109/UralCon49858.2020.9216229

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход