Research of drag coefficients and solid rocket motor parameters for the analysis of the movement of a short-range bicaliber aircraft


DOI: 10.34759/trd-2023-130-07

Аuthors

Savin E. I.*, Minkov L. L.**

Tomsk State University, 36 Lenin Ave., Tomsk, Tomsk region, 634050, Russia

*e-mail: esavin@stud.tsu.ru
**e-mail: lminkov@ftf.tsu.ru

Abstract

A complex problem based on the determination of intra-ballistic and external-ballistic parameters for evaluating the flight zone of a short-range bicaliber aircraft is considered. The specifics of the short-range bicaliber aircraft are shown. The solid rocket motor provides fast acceleration in a short time period to the required speed (active section). After the end of the active section the basic shell, which has a smaller caliber, is disconnected from the booster stage and continues to move in the energy-passive section of the flight. This plan allows the use of solid fuel with high energy and temperature characteristics and the use of the lightweight composite materials design of the propulsion system. Also, resetting the booster stage of a larger caliber significantly improves the aerodynamic quality in the energy-passive flight section. The law of change of the axial component of the thrust force in the quasi-stationary combustion duration of solid rocket motors is used for the thrust force mathematical description. Equations for the longitudinal motion of a material point in the atmosphere are used for the mathematical description of external ballistics. The dependence of the drag coefficient on speed and altitude is given. The Heunʼs method with a predictor-corrector scheme is used for the numerical solution of differential equations. The possibility of a preliminary evaluation of the flight zone with the coordinates of a short-range aircraft is shown. To improve the accuracy of calculations, it is possible to supplement the systems of equations with components of the lateral force, lift force, Magnus force, aerodynamic moments, rudder angles, etc. Also, to improve the accuracy of the numerical solution of equations, higher order solution methods can be used.

Keywords:

bicaliber plan, drag coefficient, booster stage, basic shell, thrust

References

  1. Vetrov V.V., Dunaev V.A., Kostyanoi E.M., Morozov V.V. Fundamental’nye issledovaniya, 2012, no. 11-2, pp. 377-382.
  2. Vetrov V.V., Gusev A.V., Kuznetsov V.M. Dikshev A.I., Kostyanoi E.M. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2017, no. 4, pp. 11-16.
  3. Dikshev A.I. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk, 2013, no. 4 (79), pp. 37-47.
  4. Dikshev A.I., Kostyanoi E.M. Trudy MAI, 2014, no. 74. URL: https://trudymai.ru/eng/published.php?ID=49300
  5. Vetrov V.V., Dikshev A.I., Kostyanoi E.M., Obrazumov V.I., Khokhlov N.I. Chetvertaya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Fundamental’nye osnovy ballisticheskogo proektirovaniya», Saint-Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet «Voenmekh», 2015, pp. 56-62.
  6. Kurchanov M.V. Trudy MAI, 2013, no. 68. URL: https://trudymai.ru/eng/published.php?ID=41792
  7. Novak K.V., Oleshko V.S., Starikova I.O., Toforov M.S. Trudy MAI, 2017, no. 94. URL: https://trudymai.ru/eng/published.php?ID=80936
  8. Vetrov V.V., Vorob’ev A.A., Morozov V.V. Shestaya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Fundamental’nye osnovy ballisticheskogo proektirovaniya», Saint-Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet «Voenmekh», 2018, pp. 8-12.
  9. Sorkin R.E. Teoriya vnutrikamernykh protsessov v raketnykh sistemakh na tverdom toplive: vnutrennyaya (Theory of intra-chamber processes in solid propellant rocket systems: internal ballistics), Moscow, Nauka, 1983, 288 p.
  10. Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigatelei (Theory of rocket engines), Moscow, Mashinostroenie, 1989, 464 p.
  11. Sokolov G.F., Morozov V.D., Aleshichev I.A. Patent 2053401 C1 RF, 27.01.1996.
  12. Benevol’skii S.V., Burlov V.V., Kazakovtsev V.P. et al. Ballistika (Ballistics), Penza, PAII, 2005, 510 p.
  13. Lysenko L.N. Vneshnyaya ballistika (External ballistics), Moscow, MGTU im. Baumana, 2018, 328 p.
  14. Dmitrievskii A.A., Lysenko L.N., Bogodistov S.S. Vneshnyaya ballistika (External ballistics), Moscow, Mashinostroenie, 1991, 640 pp.
  15. Faraponov V.V., Savkina N.V., Bimatov V.I. Matematicheskoe modelirovanie dvizheniya neupravlyaemogo osesimmetrichnogo tela v odnorodnom pole sily tyazhesti (Mathematical modeling of the motion of an uncontrolled axisymmetric body in a uniform gravity field), Tomsk, OOO «STT», 2017, 60 p.
  16. Konovalov A.A., Nikolaev Yu.V. Vneshnyaya ballistika (External ballistics), Moscow, TsNII informatsii, 1979, 228 pp.
  17. Parshin Zh.P., Chunaev N.I., Logvin A.M. Vneshnyaya ballistika. Ch.1. Uravnenie dvizheniya snaryadov (External ballistics. Part 1. Equation of projectile motion), Moscow, MO SSSR, 1984, 386 p.
  18. SolidWorks Flow Simulation 2009 Tutorial. Dassault System SolidWorks Corporation, 2009, 244 p.
  19. Verzhbitskii V.M. Chislennye metody (Numerical Methods), Moscow, Izdatel’skii dom ONIKS 21 vek, 2005, 400 p.
  20. Vinitskii A.M. Raketnye dvigateli na tverdom toplive (Rocket engines on solid fuel), Moscow, Mashinostroenie, 1973, 348 p.
  21. Lipanov A.M., Aliev A.V. Proektirovanie raketnykh dvigatelei tverdogo topliva (Design of solid propellant rocket engines), Moscow, Mashinostroenie, 1995, 400 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход