Variational formulation of nonlinear boundary value problems in the dynamics of two fluids performing a given motion in space


DOI: 10.34759/trd-2023-130-11

Аuthors

Win K. K.*, Temnov A. N.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: win.c.latt@gmail.com
**e-mail: antt45@mail.ru

Abstract

This article contains the derivation of the equations of motion of a solid case with a two-layer fluid, considered as one mechanical system. The dynamics is based on the principle of least action in the form of Hamilton-Ostrogradsky. The variational formulation of the problem of dynamics has certain advantages, for example, from the point of view of substantiating the necessity and sufficiency of the derived equations and boundary conditions, and considering the body and fluid as one system allows one to achieve a certain multiplicity. The mechanical meaning of the equations is interpreted, which are presented in several different forms, in particular, in the form of the Lagrange equations. The question of the integrals of the equations of motion and the conditions under which they take place is considered.

The article is devoted to the formulation of the variational principle for a multilayer ideal heavy fluid located in a cylindrical cavity of a solid body that performs specified angular oscillations around a fixed axis. A similar problem is due to the fact that the application of the variational principle in continuum mechanics is based on the Hamilton-Ostrogradsky principle, the mathematical form of which is written in Euler variables for hydrodynamic problems acquires significant mathematical differences. The article shows that with the help of the variational principle, written in a form different from the traditional one, it is possible to obtain a complete set of equations of nonlinear motions of liquids, including nonlinear kinematic and dynamic conditions on the interfaces of liquids filling the cavity of a solid body that performs a given movement.

Keywords:

variational principle, immiscible liquids, perturbed interface, nonlinear boundary value problem, comparison motions

References

  1. Berdicheskii V.L. Variatsionnyi printsip mekhaniki sploshnoi sredy (Variational principle of continuum mechanics), Moscow, Nauka, 1983, 447 p.
  2. Moiseev N.N., Rumyantsev V.V. Dinamika tela s polostyami, soderzhashchimi zhidkost’ (Dynamics of a body with cavities containing fluid), Moscow, Izd-vo «Nauka», 1965, 441 p.
  3. Zommerfel’d A. Mekhanika deformiruemykh sred (Mechanics of deformable media), Moscow, Izd-vo inostrannoi literatury, 1954, 491 p.
  4. Luke J.C. A variational principle for a fluid with a free surface, Journal of Fluid Mechanics, 1967, vol. 27, pp. 395-397. DOI:10.1017/S0022112067000412
  5. Lukovskii I.A. Vvedenie v nelineinuyu dinamiku tverdogo tela polostyami, soderzhashchimi zhidkost’ (Introduction to the nonlinear dynamics of a rigid body with cavities containing a liquid), Kiev, Naukova dumka, 1990, 296 p.
  6. Lukovskii I.A. Issledovanie nelineinykh kolebanii zhidkosti v krugovom tsilindricheskom sosude s dnishchem proizvodnoi formy variatsionnym metodom. -V kn.: Dinamika ustoichivost’ upravlyaemykh sistem (Investigation of nonlinear fluctuations of a liquid in a circular cylindrical vessel with a bottom of a derivative form by the variational method. In the book: Dynamics and stability of controlled systems), Kiev, Institut matematiki AN USSR, 1977, pp. 32-44.
  7. Selidzher R.L., Uitem G.B. Variatsionnyi printsip v mekhanike sploshnoi sredy. Mekhanika (Variational principle in continuum mechanics. Mechanics), Moscow, Mir, 1969, no. 5, pp. 99-123.
  8. Lukovskii I.A. Variatsionnyi metod v nelineinykh zadachakh dinamiki ogranichennogo ob"ema zhidkosti. V kn.: Kolebaniya uprugikh konstruktsii s zhidkost’yu (Variational Method in Nonlinear Problems of the Dynamics of a Limited Fluid Volume. In the book: Oscillations of elastic structures with liquid), Moscow, Volna, 1976, pp. 260-265.
  9. Shklyarchuk F.N. Problemy mashinostroeniya i nadezhnosti mashin, 2015, no. 1, pp. 17-29.
  10. Shklyarchuk F.N. Dinamika konstruktsii letatel’nykh apparatov (Dynamics of aircraft structures), Moscow, MAI, 1983, 79 p.
  11. Shklyarchuk F.N. Trudy 7-i Vsesoyuznoi konferentsii po teorii obolochek i plastin (Proceedings of the 7th All-Union Conference on the Theory of Shells and Plates), Moscow, Nauka, 1966, pp. 835-840.
  12. Grishanina T.V., Shklyarchuk F.N. Izvestiya RAN. Mekhanika tverdogo tela, 2016, no. 3, pp. 141- 157.
  13. Rabinovich B.I. Vvedenie v dinamiku raket-nositelei kosmicheskikh apparatov (Introduction to the dynamics of spacecraft carrier rockets), Moscow, Mashinostroenie, 1975, 416 p.
  14. Mikishev G.N., Rabinovich B.I. Dinamika tonkostennykh konstruktsii s otsekami, soderzhashchimi zhidkost’ (Dynamics of thin-walled structures with compartments containing liquid), Moscow, Mashinostroenie, 1971, 504 p.
  15. Grishanina T.V., Shklyarchuk F.N. Primenenie metoda otsekov k raschetu kolebanii zhidkostnykh raket-nositelei (Application of the compartment method to the calculation of oscillations of liquid-propellant launch vehicles), Moscow, MAI, 2017, 100 p.
  16. Serov M.V., Aver’yanova G.M., Karnacheva E.V. Izvestiya MGTU MAMI. Seriya: Estestvennye nauki, 2014, no. 4 (22), vol. 4, pp. 84-89.
  17. Sharfarets B.P. Nauchnoe priborostroenie, 2017, vol. 27, no. 1, pp. 102-112.
  18. Makarov P.A. Vestnik Syktyvkarskogo universiteta. Seriya 1: Matematika. Mekhanika. Informatika. 2017, no. 2 (23), pp. 46-59.
  19. Rumyantsev V.V. Prikladnaya matematika i mekhanika, 1973, vol. 37, pp. 963-973.
  20. M. La Rocca, G. Sciortino, C. Adduce, M.A. Boniforti. Experimental and theoretical investigation on the sloshing of a two-liquid system with free surface, Physics of Fluids, 2005, no. 17 (6), pp. 062101. DOI:10.1063/1.1922887
  21. M. La Rocca. Interfacial gravity waves in a two-fluid system, Fluids Dynamics Research, 2002, no. 30, pp. 31-66. DOI:10.1016/S0169-5983(01)00039-9
  22. Blinkova A.Yu., Ivanov S.V., Kuznetsova E.L., Mogilevich L.I. Trudy MAI, 2014, no. 78. URL: http://trudymai.ru/eng/published.php?ID=53486
  23. Pozhalostin A.A., Goncharov D.A. Trudy MAI, 2017, no. 95. URL: http://trudymai.ru/eng/published.php?ID=84412
  24. Pak Songi, Grigor’ev V.G. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159785. DOI: 10.34759/trd-2021-119-08

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход