Results of numerical simulation of the supersonic jet


DOI: 10.34759/trd-2023-130-24

Аuthors

Abdurashidov T. O.*, But A. B.**, Chupina E. S.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: rocket37@yandex.ru
**e-mail: anatoly_boot@mail.ru
***e-mail: 2qchupina.yelizaveta@mail.ru

Abstract

The paper presents calculations of supersonic cold turbulent jets using the application software. The calculation results are compared with experimental data. Methods are given for adapting the computational grid to obtain high-quality calculation results and save machine resources in the course of calculations. Computational studies of the outflow of supersonic jets, along with experimental works [1, 2, 5–13, 20], are of practical importance for engineering design work in the field of launch vehicle design and their operation. One of the main stages of numerical modeling is the validation of mathematical models on small experimental setups, which should confirm the correctness of the chosen mathematical model and methods for solving the numerical problem. Validation of the outflow of hot gas at supersonic speeds is complicated by the special nature of the flows, which have shock waves in their structure, the complex chemical composition of combustion products and possible chemical reactions that determine the characteristics of the flow. In this paper, we consider the issue of numerical simulation of the shock wave structure described in the literature [1–4] and the turbulent flow of a cold supersonic jet, and also compare the calculated values with experimental data. The calculations presented in the article showed that the use of local adaptation of the grid in the regions of gradients made it possible to reduce the cost of computing power by 8.6 times, and also to achieve good agreement between the numerical results and the results obtained experimentally on a supersonic experimental model.

Keywords:

gas dynamics, supersonic jets, numerical simulation, computational calculation

References

  1. Biryukov G.P., But A.B., Khotulev V.A., Fadeev S.A. Gazodinamika startovykh kompleksov (Gas dynamic of launch complexes), Moscow, «RESTART», 2012, 364 p.
  2. Mashtakov A.P., Krasil’nikov R.V. Fizicheskie osnovy puska (Physical foundation of the launch), Saint Petersburg, Izd-vo BGTU, 2018, 112 p.
  3. Kudimov N.F., Safronov A.V., Tret’yakova O.N. Prikladnye zadachi gazodinamiki i teploobmena v energeticheskikh ustanovkakh raketnoi tekhniki (Applied problems of gas dynamics and heat transfer in rocket technics), Moscow, Izd-vo MAI, 2014, 167 p.
  4. Pandey K., Kumar V., Srivastava P. CFD Analysis of Twin Jet Supersonic Flow with Fluent Software, Current Trends in Technology and Sciences, 2012, vol. 1, issue 2, pp. 84-91.
  5. Fu Debin, Yu Yong, Niu Qinglin. Simulation of underexpanded supersonic jet flows with chemical reactions, Chinese Journal of Aeronautics, 2014, vol. 27 (3), pp. 505-513. DOI: 10.1016/J.CJA.2014.04.003
  6. Zang B., Vevek U.S., Lim H.D., Wei X., New T.H. An assessment of OpenFOAM solveron RANS simulation of round supersonic free jets, Journal of Computational Science, 2018, vol. 28, pp. 18-31. DOI: 10.1016/j.jocs.2018.07.002
  7. Glushko G.F., Ivanova I.E., Kryukov I.A. Raschet sverkhzvukovykh struinykh techenii. Preprint № 793. (Calculation of supersonic jet flows), Moscow, Institut problem mekhaniki RAN, 2006, 36 p.
  8. Molchanov A.M. Aerospace MAI Journal, 2009, vol. 16, no. 1. pp. 38–48.
  9. Kudimov N.F., Safronov A.V., Tret’yakova O.N. Trudy MAI, 2013, no. 70. URl: https://trudymai.ru/eng/published.php?ID=44440
  10. Isaev S.A., Lipnitskii Yu.M., Baranov P.A., Panasenko A.V., Usachov A.E. Inzhenerno-fizicheskii zhurnal, 2012, vol. 85, no. 6, pp. 1253–1267.
  11. Troshin A.I., Zapryagaev V.I., Kiselev N.P. Trudy TsAGI, 2013, no. 2710, pp. 111–120.
  12. Zapryagaev V.I., Ivanov I.E., Kryukov I.A., Lokotko A.V. VII Mezhdunarodnaya konferentsiya po neravnovesnym protsessam v soplakh i struyakh, NPNJ-2008: sbornik trudov. Moscow, Izd-vo MAI, 2008, pp. 192–195.
  13. Abdurashidov T.O., Osipov A.V., Korchagova V.N., Kraposhin M.V, Smirnova E.V., Strizhak S.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 4, pp. 7-20.
  14. Snazin A.A., Shevchenko A.V., Panfilov E.B. Trudy MAI, 2022, no. 125. URl: https://trudymai.ru/eng/published.php?ID=168165. DOI: 10.34759/trd-2022-125-06
  15. Zapryagaev V.I., Kudryavtsev A.N., Lokotko A.V., Solotchin A.V., Pavlov A.A., Hadjadj A. An Experimental and Numerical Study of a Supersonic Jet Shock-Wave Structure, West East High Speed Flow Fields, Barcelona, 2003, pp. 244-305.
  16. Zapryagaev V.I., Kavun I.N., Kundaev S.G. Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Fizika, 2013, no. 8, no. 4, pp. 84–92.
  17. Antipova M.S., Dyad’kin A.A., Zapryagaev V.I., Krylov A.N. Kosmicheskaya tekhnika i tekhnologii, 2016, no. 1 (12), pp. 5-11.
  18. Kravchuk M.O., Kudimov N.F., Safronov A.V. Trudy MAI, 2015, no. 82. URL: https://trudymai.ru/eng/published.php?ID=58536
  19. Kudimov N.F., Safronov A.V., Tret’yakova O.N. Trudy MAI, 2013, no. 69. URL: https://trudymai.ru/eng/published.php?ID=43076
  20. Barth T.J. Jespersen D. The design and application of upwind schemes on unstructured meshes, In Proceedings of the Technical Report AIAA-89-0366, 2012. DOI: 10.2514/6.1989-366

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход