Simulation of the vibration background of the spacecraft


DOI: 10.34759/trd-2023-131-02

Аuthors

Gerasimchuk V. V.*, Zhiryakov A. V.**, Kuznetsov D. A.***, Telepnev P. P.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: gerasimchuk@laspace.ru
**e-mail: dep127180@laspace.ru
***e-mail: kuznetsovda@laspace.ru
****e-mail: telepnev@laspace.ru

Abstract

As pulses exchanging units, flywheel engines and correcting engines play the part of a fundamental component of the majority of spacecraft for both coarse orientation control and precise guidance. The rotating masses’ unbalance while flywheels engines operation and force vibration impacts caused by pressure pulsations in the combustion chamber of correction engines are able to cause excessive fluctuations of the research equipment, which may lead to a in the functioning accuracy decrease. The vibration load levels are being determined during the spacecraft experimental testing. However, it seems rational to select optimal places for the high-precision equipment installing by their vibration background modeling at the early design stages to minimize the level of their vibration load.

The vibration background was being determined for the developed finite element model of the spacecraft «flexible» design with the environment of the Femap with NX Nastran software package. Computations were performed for vibration loading options by one of the four engines-flywheels, and from the two correction engines. The model of the by the flywheel engine exposure accounted for the forces resulting from the flywheel imbalance. A harmonic action with an amplitude proportional to the square of the flywheel rotation speed was being modeled. The vibration load levels from the correction engines disturbing forces were studied for both in-phase and outphase cases of the exposure. The study was being performed by the harmonic analysis method. The values of the disturbances amounts corresponded to the levels of disturbances of the standard flywheel engines and correction engines.

The vibration load levels assessment in the places of the supposed fixing of the devices was being performed according to the maximum values of the computed linear and angular vibration accelerations, angular velocities and angular displacements along the three axes.

The vibration background modeling option of the of installation sites of the equipment sensitive to the position stability for its effective operation presented in the article allows for a preliminary assessment of the vibration load level of such equipment at the early stages of a spacecraft design.

Keywords:

natural oscillation frequency, dynamic circuit, spacecraft

References

  1. Efanov V.V., Telepnev P.P., Kuznetsov D.A. Astronomicheskii vestnik, 2019, vol. 53, no. 6, pp. 475-480.
  2. Moisheev A.A., Mordyga Yu.O. Sravnitel’nyi analiz vliyaniya osnovnykh bortovykh istochnikov vozmushchenii KA na «vibratsionnyi smaz» izobrazheniya kosmicheskogo teleskopa (Comparative analysis of the impact of major on-Board sources of disturbances KA na «vibrating blur» image space telescope), Moscow, NPO im. S.A. Lavochkina, 1998.
  3. Popov I.P. Trudy MAI, 2023, no. 129. URL: https://trudymai.ru/eng/published.php?ID=173002. DOI: 10.34759/trd-2023-129-02
  4. Raushenbakh B.V., Tokar’ E.N. Upravlenie orientatsiei kosmicheskikh apparatov. (Spacecraft orientation control), Moscow, Nauka, 1974, 600 p.
  5. John Alcorn, Cody Allardy, Hanspeter Schaubz. Fully-Coupled Dynamical Jitter Modeling of a Rigid Spacecraft with Imbalanced Reaction Wheels, AIAA/AAS Astrodynamics Specialist Conference, 2016, Boulder, Colorado, DOI:10.2514/6.2016-5686
  6. Ageenko Yu.I., Pegin I.V., Chesnokov D.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2014, no. 5 (47), Ch. 1, pp. 112-117.
  7. Mashinostroenie. Entsiklopediya. T. 1-3. Kniga 1. Dinamika i prochnost’ mashin. Teoriya mekhanizmov i mashin (Mechanical engineering. Encyclopedia. Vol. 1-3. Book1. Dynamics and strength of machines. Theory of mechanisms and machines), Moscow, Mashinostroenie, 1994, 534 p.
  8. Masterson R., Miller D., Grogan R. Development and Validation of Reaction Wheel Disturbance Models: Empirical Model, Journal of Sound and Vibration, 2002, vol. 249 (3), pp. 575-598. DOI:10.1006/jsvi.2001.3868
  9. Rizzo M.J., Rinehart S., Alcorn J., Barry R., Benford D., Fixsen D. et al. Building an Interferometer at the Edge of Space: Pointing and Phase Control System for BETTII, SPIE Space Telescopes and Instrumentation, 2014. DOI:10.1117/12.2055016
  10. Zanin K.A., Moskatin’ev I.V., Demidov A.Yu. Vestnik NPO im. S.A. Lavochkina, 2023, no. 1, pp. 12-20. DOI: 10.26162/LS.2023.59.1.002
  11. Shaub H., Junkins J. Analytical Mechanics of Space Systems, Reston, Virdzhiniya, 2018. DOI: 10.2514/4.105210
  12. Demenko O.G., Biryukov A.S. Vestnik NPO im. S.A. Lavochkina, 2023, no. 2, pp. 70-77.
  13. Frolov K.V. Vibratsii v tekhnike: Spravochnik v 6-ti tomakh. T. 6. Zashchita ot vibratsii i udarov. (Vibrations in technology: A handbook in 6 volumes. Vol. 6. Protection against vibrations and shocks), Moscow, Mashinostroenie, 1985, 456 p.
  14. Gerasimchuk V.V. Dvoinye tekhnologii, 2021, no. 2 (95), pp. 28-32.
  15. Shimkovich D.G. Raschet konstruktsii v MSC.visualNastran dlya Windows (Calculation of structures in MSC.visualNastran for Windows), Moscow, DMK Press, 2004, 704 p.
  16. Telepnev P.P., Zhirykov A.V., Gerasimchuk V.V. Calculating the Structural Vibration Loading Applied to Spacecraft Using Dynamic Analysis, Solar System Research, 2021, vol. 55, no. 7. DOI: 10.1134/S0038094621070200
  17. Lur’e S.A., Shramko K.K. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161414. DOI: 10.34759/trd-2021-120-02
  18. Amir’yants G.A., Malyutin V.A. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/eng/published.php?ID=100600
  19. Telepnev P.P., Kuznetsov D.A. Osnovy proektirovaniya vibrozashchity kosmicheskikh apparatov (Fundamentals of designing vibration protection of spacecraft: textbook), Moscow, Izd-vo MGTU im. N.E.Baumana, 2019, 102 p.
  20. Pontryagin L.S. Obyknovennye differentsial’nye uravneniya (Ordinary differential equations), Moscow, Nauka, 1974, 331 p.
  21. Kheilen V., Lammens S., Sas P. Modal’nyi analiz: teoriya i ispytaniya (Modal analysis: theory and tests), Moscow, OOO «Novatest», 2010, 319 p.
  22. Eliseev A.V., Kuznetsov N.K., Eliseev S.V. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158213. DOI: 10.34759/trd-2021-118-04
  23. Semenov M.E., Solov’ev A.M., Popov M.A. Trudy MAI, 2017, no. 93. URL: https://trudymai.ru/eng/published.php?ID=80231
  24. Merkur’ev S.A. Inzhenernyi zhurnal: nauka i innovatsii, 2020, no. 6 (102). DOI: 10.18698/2308-6033-2020-6-1990
  25. Kudryavtsev S.V., Rozovenko V.M. Vestnik NPO im. S.A. Lavochkina, 2023, no. 1, pp. 74-79. DOI: 10.26162/LS.2023.59.1.009

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход