Assessment of the impact of operating conditions on technical condition of fuel system units aircraft engine systems


DOI: 10.34759/trd-2023-131-21

Аuthors

Fetisov E. V.*, Zavyalik I. I.**

Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: mr_907@mail.ru
**e-mail: zavyalik26@yandex.ru

Abstract

Requirements to aviation equipment operational properties are being tightened in the process of the aircraft functional systems improving, aimed at increasing flight reliability and safety levels. Despite substantial impact of the fuel impurity on the reliability of the fuel system units, this issue is still remains understudied. Despite the significant impact of aviation fuel pollution on the reliability of aircraft fuel system units, this issue remains insufficiently studied. This is especially true for establishing quantitative dependences of the probability of failure-free operation of the fuel system units most sensitive to the quality and purity of aviation fuel on the degree and nature of contamination and changes in the aircraft operating conditions. Conventional techniques for the aircraft fuel system failure-free assessment are based on the reliability factor values determining from statistical data on the results of tests and operation. It allows accounting for only the fact of the failure manifestation itself, but does not allow assessing such external factors impact as environmental conditions of aviation equipment operation and application, the impurity changing of the applied fuel effect on the probability of parametric failures and maloperation manifestation of the aircraft fuel system units. To solve this problem, the article presents a mathematical simulation model of the aircraft engine fuel system units functioning under various aircraft operating conditions developed with the MATLAB Simulink. The model allows studying and predicting technical condition of the aircraft engine fuel system units depending on changes in the aircraft operating conditions. For this, the dependence of the key parameters values of the fuel system on the impurity particles size and concentration in the aviation fuel in various conditions of the aircraft operation is being embedded into the system of equations, describing the aviation engine fuel system functioning based on the aggregative approach. The developed model application at conducting studies on the fuel units operability assessment with ranges expansion of input and internal parameters values (fuel system units of the aircraft power plant) will allow obtaining reliable assessment of the fuel system technical condition at the aircraft operating conditions changing.

Keywords:

reliability, fuel system, model, defining parameter, technical condition

References

  1. Bainetov S.D. Glavnaya zadacha — bezopasnost’ poletov, Avia-Soyuz. 2017. URL: http://www.aex.ru/fdocs/2/2017/5/12/28293/
  2. Bainetov S.D. Aviapanorama, 2016, no. 4 (118), pp. 6-11.
  3. Oleshko V.S., Pototskii M.V., Rodionov A.V. Oboronnyi kompleks — nauchno-tekhnicheskomu progressu Rossii, 2014, no. 2 (122), pp. 50-52.
  4. Lubkov N.V., Spiridonov I.B., Stepanyants A.S. Trudy MAI, 2016, no. 85. URL: https://trudymai.ru/eng/published.php?ID=67501
  5. Krechko A.V., Pluzhnikov V.I., Supon’ko K.L., Shchegolev G.P. Aviatsionnaya promyshlennost’, 2013, no. 3, рр. 57-61.
  6. Brilliant H.M. Analysis of Scramjet Engines Using Energy Methods, AIAA Paper 1995-2767. 1995, pp. 1-12.
  7. Visser W. Generic Analysis Methods for Gas Turbine Engine Performance: The development of the gas turbine simulation program GSP. PhD thesis. Technische Universiteit Delft, 2014. DOI: DOI:10.4233/UUID:F95DA308-E7EF-47DE-ABF2-AEDBFA30CF63
  8. Artemenko I.V., Oleshko V.S. Vestnik Samarskogo universiteta. Ekonomika i upravlenie, 2020, vol. 11, no. 3, pp. 156-166. DOI: 10.18287/2542-0461-2020-11-3-156-166
  9. Zavyalik I.I., Fetisov E.V., Trofimchuk M.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93371
  10. Maksimei I.V., Smorodin V.S., Demidenko O.M. Razrabotka imitatsionnykh modelei slozhnykh tekhnicheskikh sistem (Development of simulation models of complex technical systems), Gomel, GGU im. F. Skoriny, 2014, 298 p.
  11. Kabanov A.A. Trudy MAI, 2013, no. 65. URL: http:// trudymai.ru/eng/published.php?ID=35910
  12. Yanovskii L.S., Kazakov V.A., Pavlov V.V. Trudy MAI, 2012, no. 56. URL: https://trudymai.ru/eng/published.php?ID=30309
  13. Sovetov B.Ya., Yakovlev S.A. Modelirovanie sistem (Systems Modeling), Moscow, Vysshaya shkola, 2001, 343 p.
  14. Zavyalik I.I., Fetisov E.V., Shevtsov S.A., Mokshin D.A. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya, posvyashchennoi 50-tiyu MGTU GA «Grazhdanskaya aviatsiya na sovremennom etape razvitiya nauki, tekhniki i obshchestva»: tezisy dokladov. Moscow, ID Akademii Zhukovskogo, 2021, pp. 33-35.
  15. Timerkeev R.G., Sapozhnikov V.M. Promyshlennaya chistota i tonkaya fil’tratsiya rabochikh zhidkostei letatel’nykh apparatov (Industrial purity and fine filtration of working fluids of aircraft), Moscow, Mashinostroenie, 1986, 152 p.
  16. Krovyakov V.B., Koroteev A.Yu., Yalpaev A.A. et. al. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75588
  17. Bytsenko O.A., Martynkevich D.S., Oleshko V.S., Strizhevskaya N.O. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2022, no. 4, pp. 111-115.
  18. Gras’ko T.V., Karpenko O.N., Oleshko V.S., Samoilenko V.M. Oboronnyi kompleks — nauchno-tekhnicheskomu progressu Rossii, 2017, no. 4 (136), pp. 14-19.
  19. Zavyalik I.I., Fetisov E.V., Vereshchagin Yu.O. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2016614253, 19.04.2016.
  20. Mukhammedov N.A., Chervonyuk V.V. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2016, vol. 20, no. 1 (71), pp. 116-121.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход