Digital twins in the aerospace industry: an object-oriented approach
DOI: 10.34759/trd-2023-131-24
Аuthors
*, **Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: k_svetlana_valen@mail.ru
**e-mail: semenov@nicevt.ru
Abstract
The increasing complexity, versatility and uniqueness of aerospace products require new efficient approaches to their design and operation. It is expected that the use of digital twin technology will effectively solve emerging problems. In the publications and data sources, the concept of a digital twin is given quite a lot of definitions. The national standard GOST R 57700.37–2021, adopted in 2021, defines the digital twin of a product as follows: «A system consisting of a digital model of a product and two-way information links with the product (if the product is available) and (or) its components.» In the aerospace industry, there are the following features of creating digital twins:
- A variety of simulated environments in which the product is operated: aerodynamic, vacuum, gravitational, plasma, radiation, thermodynamic, liquid, etc.
- strict requirements for the adequacy and reliability of the product. At the same time, a digital twin of a complex product must be developed and manufactured within an acceptable timeframe, which requires new methods that adequately display the changing properties of physical objects in a digital representation.
The creation of a digital twin largely depends on the methodology of development, production and operation. It becomes relevant to create a software and technological platform for the production and use of digital twins in the aerospace industry, taking into account life cycle processes (according to GOST R 56135). A platform for creating digital twins should support the proposed methodology, methods for integrating physical objects with the Internet of Things, and graphodynamic description of simulated objects. The article explores the technology of developing digital twins in the aerospace industry. The main features of creating a digital twins in the aerospace industry have been determined. Fundamental technologies for the implementation of digital twins have been considered: Iot, XR, Cloud computing, AI, quantum modeling, cybersecurity. A fractal approximation methodology has been proposed for the development, production and operation of digital twins based on elastic objects, as well as a platform architecture for creating digital twins. The article considers incremental object-oriented development, production and operation of digital twins in combination with a graph-dynamic description of physical objects and methods of the Internet of things. Efficiency is achieved through the reuse of software and hardware components, surrogate models that integrate physical objects with the Internet of things and graphodynamic description of simulated objects.
Keywords:
рroduct digital twin, digital twin lifecycle, digital twin development methodology, Iot, XR (Extended reality), cloud computing, quantum modeling, system decomposition, incremental object-oriented development, fractal approximationReferences
- GOST R 57700.37–2021. Komp’yuternye modeli i modelirovanie. Tsifrovye dvoiniki izdelii (GOST R 57700.37–2021 Computer models and modeling. Digital twin products), Moscow, Rossiiskii institut standartizatsii, 2021, 15 p.
- Yin H., Wang L. Application and development prospect of digital twin technology in aerospace, Procedia Manufacturing, 2019, no. 30, pp. 641-648. DOI: 1016/j.ifacol.2021.04.165
- What is a digital twin? | IBM. URL: https://www.ibm.com/topics/what-is-a-digital-twin
- Guo J., Lv Z. Application of Digital Twins in multiple fields, Multimedia Tools and Applications, 2022, vol. 81, pp. 9-12. DOI: 1007/s11042-022-12536-5
- Elisa Negri el al. A review of the roles of Digital Twin in CPS-based production systems, Procedia Manufacturing, 2017, vol. 11, pp. 939–948. DOI: 1016/j.promfg.2017.07.198
- Semenov A.S. Prototype based Programming with Fractal Algebra, Conference: Computational mechanics and modern applied software systems (CMMASS’2019), November 2019, vol. 2181 (1), pp. 020009. DOI: 1063/1.5135669
- Semenov A.C. Modelirovanie samoorganizuyushchikhsya protsessov razvitiya: fraktoidno-orientirovannyi podkhod (Modeling of self-organizing development processes: a fractoid-oriented approach), Moscow, MAI, 2013, 155 p.
- Eliseev V., Museev A., Tamm A., Gavrilov P. Avtomatizatsiya proektirovaniya, 2020, 1-2, pp. 67-77.
- Semenov A.S. Graph-based Dynamic Analysis of Elastic Systems, 7th International Conference on Control, Decision and Information Technologies (CoDIT), 2020, vol. 1, pp. 65-70. DOI: 1109/CoDIT49905.2020.9263986
- Kuznetsova S.V. Materialy XIII Mezhdunarodnoi konferentsii po prikladnoi matematike i mekhanike v aerokosmicheskoi otrasli AMMAI’2020, Moscow, MAI, 2020, pp. 737-740.
- Leont’eva I.N. Materialy II Natsional’noi nauchno-obrazovatel’noi konferentsii «Logistika: forsait-issledovaniya, professiya, praktika», Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi ekonomicheskii universitet, 2021, pp. 388-396.
- Kurganova N.V., Filin M.A., Chernyaev D.S. et al. International Journal of Open Information Technologies, 2019, vol. 7, no. 5, pp. 105-115.
- Reus S.P. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Innovatsionnye napravleniya integratsii nauki, obrazovaniya i proizvodstva: tezisy dokladov, Kerch’, Kerchenskii gosudarstvennyi morskoi tekhnologicheskii universitet, 2021, pp. 109-112.
- Penkin I.A., Shulaeva E.A. 8-ya Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Innovatsionnye perspektivy Donbassa»: sbornik trudov, Donetsk: Donetskii natsional’nyi tekhnicheskii universitet, 2022, vol. 3, pp. 17-21.
- Kabanov A.A. Inzhenernyi zhurnal: nauka i innovatsii, 2022, no. 10 (130). DOI: 18698/2308-6033-2022-10-2220
- Terekhina S.V. UEPS: upravlenie, ekonomika, politika, sotsiologiya, 2021, no. 1, pp. 55-63. URL: https://cyberleninka.ru/article/n/innovatsionnye-trendy-razvitiya-promyshlennosti
- Blinov V.L., Bogdanets S.V. Tsifrovye dvoiniki turbomashin (Digital twins of turbomachines), Ekaterinburg, Izd-vo Ural’skogo universiteta, 2022, 162 p.
- Petrov A. V. iPolytech Journal, 2018, vol. 22, no. 10 (141), pp. 56-66. DOI: 21285/1814-3520-2018-10-56-66
- Kulikov G.G., Sapozhnikov A.Yu., Kuznetsov A.A., Mavrina A.S. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2021, vol. 25, no. 2 (92), pp. 86-92. DOI: 54708/19926502_2021_2529286
- Belov V.F., Gavryushin S.S., Zankin A.I. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie, 2021, no. 3 (732), pp. 3-15. DOI: 18698/0536-1044-2021-3-3-15
- Kabanov A.A., Amosov M.V. Trudy MAI, 2023, no. 128. URL: https://trudymai.ru/eng/published.php?ID=171410. DOI: 34759/trd-2023-128-21
- Goncharov P.S., Kopeika A.L., Babin A.M. Trudy MAI, 2022, no. 126. URL: https://trudymai.ru/eng/published.php?ID=168995. DOI: 34759/trd-2022-126-09
- Brodskii M.S., Zvonarev V.V., Khubbiev R.V., Sherstyuk A.V. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170340. DOI: 34759/trd-2022-127-10
- Vakul’chik O.V. Trudy MAI, 2022, no. 127. URL: https://trudymai.ru/eng/published.php?ID=170343. DOI: 34759/trd-2022-127-13
Download