Numerical and analytical model of the stress-strain state during the expansion of thin-walled pipe blanks in a curved axisymmetric matrix


Аuthors

Feoktistov S. I.*, Andrianov I. K.**, Mar’in S. B.***

Komsomolsk-on-Amur State University (KnASU), 27, Lenin str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: serg_feo@mail.ru
**e-mail: ivan_andrianov_90@mail.ru
***e-mail: maryinsb@mail.ru

Abstract

The study considers numerical and analytical modeling of the stress-strain state and force characteristics during expansion of the thin-walled pipe blanks in a curved axisymmetric matrix. The equilibrium equations of the momentless theory of thin axisymmetric shells with regard to the nonlinear plasticity, changes in wall thickness and contact friction are employed when developing the model. The computations are based on the numerical method of variable elasticity parameters, which allows determining stresses and strains; the thickness distribution in the meridian section; the amount of contact pressure, as well as to plot the change in the force distribution depending on the application point displacement of the force relative to the matrix. A mathematical model for the stress-strain state of pipe blanks estimating during expansion is developed for a matrix, which profile is described by an arbitrary function. The numerical technique for the stress-strain state computing is based on the variable elasticity parameters method, which allows solving the problem of expansion in an elastic-plastic formulation. Besides, the developed model accounts for the material compressibility during elastic strain. Based on the numerical computing results, the distribution of meridian and circumferential stresses and logarithmic strains, as well as the of logarithmic strains distribution over the workpiece wall thickness are presented. An assessment of the contact pressure during crimping is performed, a decrease in the relative thickness of the workpiece along the length during distribution is noted herewith. The iterative computation process convergence by the of variable elasticity parameters method was estimated by the position of stress intensities and logarithmic strain intensities relative to the deformation diagram of the material. The proposed problem solution of the pipe blanks expansion may find application in the field of aircraft engineering in the development of thin-walled shell structures for aviation purposes.

Keywords:

method of variable elasticity parameters, pipe expansion, nonlinear plasticity, variable wall thickness, contact friction, curved matrix

References

  1. Sosenushkin E., Yanovskaya E., Smolovich I., Khachatryan D., Kinderov V. Expansion of pipe blanks, Russian Engineering Research, 2016, vol. 36, pp. 239-243. DOI: 10.3103/S1068798X16030175

  2. Lebedinsky I.N. Deformation during free dispensing of a hollow workpiece, Forging and Stamping Production. Processing of Materials by Pressure, 2016, no. 1, pp. 7-9.

  3. Cao Bo, Iwamoto Takeshi. A strength prediction of joints by Fe-Mn-Si-Cr shape memory alloy through strain monitoring during pre-processes including diameter expansion and tightening by heating, Engineering Fracture Mechanics, 2023, vol. 284, pp. 109234. DOI: 10.1016/j.engfracmech.2023.109234

  4. Zhao Pengjing, Yang Yo-Lun, Gao Peng, Jiao Jingpin. Research on stamping forming prediction of aluminum alloy sheet based on RBF neural network, Journal of Physics: Conference Series, 2022, vol. 2396, pp. 012038. DOI: 10.1088/1742-6596/2396/1/012038

  5. Gryazev M., Pasynkov A., Larin S. Effect of Initial Mechanical Anisotropy of the Pipe Blank in Expansion by a Conical Punch, Russian Engineering Research, 2018, vol. 38, pp. 371-375. DOI: 10.3103/S1068798X1805009X

  6. Feoktistov S., Andrianov I. Construction of Forming Limit Diagram for Sheet Blanks from Aviation Aluminum Alloys, Advanced Engineering Research, 2023, vol. 23, pp. 7-16. DOI: 10.23947/2687-1653-2023-23-1-7-16

  7. Han Z.R., Zhang L.Y., Huang C.Y. Optimum sheet metal blank design by finite element increment method, Journal of plasticity engineering, 2007, vol. 14(6), pp. 59-62.
  8. Lee C.H., Huh H. Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation, Journal of Materials processing Technology, 1998, vol. 82 (1), pp. 145-155. DOI: 10.1016/s0924-0136(98)00034-x

  9. Kumar Dharmesh, Zhigang Liu, Jirathearanat Suwat, Anantharajan Senthil Kumar. Investigation of Residual Stresses Induced by Incremental Sheet Forming and Stamping in Aluminum Alloys, Journal of Materials Engineering and Performance, 2022. DOI: 10.1007/s11665-022-07304-3

  10. Kaljuzny V., Oleksandrenko Y., Kulikov I. The experiment-calculated analysis of open bulging of tubular workpiece, Journal of Mechanical Engineering, 2014, no. 1 (70), pp. 63-68.

  11. Kovalevich M.V., Klimova A.A. Trudy MAI, 2010, no. 38. URL: https://trudymai.ru/eng/published.php?ID=14150

  12. Bolkhovitin M.S., Korolev N.N., Monakhova V.P. Trudy MAI, 2015, no. 81. URL: https://trudymai.ru/eng/published.php?ID=57706

  13. Sapozhnikova Yu.A., Chernikov D.G. Trudy MAI, 2011, no. 45. URL: https://trudymai.ru/eng/published.php?ID=25507

  14. Astapov V.Yu., Khoroshko L.L., Dzhozdani M.S., Khoroshko A.L. Trudy MAI, 2017, no. 95. URL: https://trudymai.ru/eng/published.php?ID=84585

  15. Gorbunov M.N. Tekhnologiya zagotovitel’no-shtampovochnykh rabot v proizvodstve samoletov (Technology of procurement and stamping works in the production of aircraft), Moscow, Mashinostroenie, 1981, 224 p.

  16. Storozhev M.V., Popov E.A. Teoriya obrabotki metallov davleniem (Theory of metal processing by pressure), Moscow, Mashinostroenie, 1977, 423 p.

  17. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Applied theory of plasticity and creep), Moscow, Mashinostroenie, 1975, 399 p.

  18. Ershov V.I., Popov O.V., Chumadin A.S. et al. Listovaya shtampovka: Raschet tekhnologicheskikh parametrov (Sheet stamping: Calculation of technological parameters), Moscow, Izd-vo MAI, 1999, 516 p.

  19. Yakovlev S.S., Bessmertnaya Yu.V., Platonov V.I. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2015, no. 11, Ch. 1, pp. 10-19.

  20. Gryazev M.V., Larin S.N. Fundamental’nye i prikladnye problemy tekhniki i tekhnologii, 2017, no. 4-2 (324), pp. 12-17.

  21. Nepershin R.I. Vestnik MGTU “Stankin”, 2009, no. 4 (8), pp. 54-60.

  22. Birger I.A. Kruglye plastinki i obolochki vrashcheniya (Round plates and shells of rotation), Moscow, Oborongiz, 1961, 368 p.

  23. Polukhin P.I., Gun G.Ya., Galkin A.M. Soprotivlenie plasticheskoi deformatsii metallov i splavov (Resistance to plastic deformation of metals and alloys), Moscow, Metallurgiya, 1983, 352 p.

  24. Chumadin A.S. Teoriya i raschety protsessov listovoi shtampovki (dlya inzhenerov) (Theory and calculations of sheet stamping processes (for engineers)), Moscow, Eksservis “VIP”, 2014, 216 p.

  25. Feoktistov S.I., Andrianov I.K. Materialy VI Dal’nevostochnoi konferentsii s mezhdunarodnym uchastiem “Fundamental’nye i prikladnye zadachi mekhaniki deformiruemogo tverdogo tela i progressivnye tekhnologii v metallurgii i mashinostroenii”: sbornik trudov. Komsomol’sk-na-Amure, Komsomol’skii-na-Amure gosudarstvennyi universitet, 2022, pp. 204-210.

  26. Feoktistov S.I., Andrianov I.K., Lin Tkhet. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2022, no. 3 (59), pp. 4-11. DOI: 10.17084/20764359-2022-59-4

  27. GOST 18482-2018. Truby pressovannye iz alyuminiya i alyuminievykh splavov. Tekhnicheskie usloviya (GOST 18482-2018. Pressed pipes made of aluminum and aluminum alloys. Technical specifications), Moscow, Standartinform, 2018, 20 p.

  28. Feoktistov S.I., Andrianov I.K., Lin Tkhet. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2022, no. 7 (63), pp. 8-13. DOI: 10.17084/20764359-2022-63-8

  29. Andrianov I.K., Feoktistov S.I. Osnovy postroeniya diagramm deformirovaniya s uchetom szhimaemosti materiala i effekta Baushingera (Fundamentals of constructing deformation diagrams taking into account the compressibility of the material and the Bauschinger effect), Komsomol’sk-na-Amure, Izd-vo KnAGU, 2022, 103 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход